A267711 Numbers k such that k mod 3 = k mod 5.
0, 1, 2, 15, 16, 17, 30, 31, 32, 45, 46, 47, 60, 61, 62, 75, 76, 77, 90, 91, 92, 105, 106, 107, 120, 121, 122, 135, 136, 137, 150, 151, 152, 165, 166, 167, 180, 181, 182, 195, 196, 197, 210, 211, 212, 225, 226, 227, 240, 241, 242, 255, 256, 257, 270, 271, 272, 285, 286
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A267540.
Programs
-
Mathematica
Select[ Range[0, 10000], (Mod[#, 3] == Mod[#, 5]) &]
-
PARI
lista(nn) = for(n=0, nn, if(n%3 == n%5, print1(n, ", "))); \\ Altug Alkan, Jan 19 2016
-
PARI
concat(0, Vec(x^2*(1+x+13*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jan 28 2016
Formula
a(n) = (1/3)*(15*n - 12*cos((2*Pi*n)/3) + 4*sqrt(3)*sin((2*Pi*n)/3) - 27).
G.f.: x^2*(13*x^2+x+1) / ((x-1)^2*(x^2+x+1)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4. - Colin Barker, Jan 28 2016
Comments