cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380485 Numbers congruent to {0, 1, 2, 3, 4, 5} mod 30.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 30, 31, 32, 33, 34, 35, 60, 61, 62, 63, 64, 65, 90, 91, 92, 93, 94, 95, 120, 121, 122, 123, 124, 125, 150, 151, 152, 153, 154, 155, 180, 181, 182, 183, 184, 185, 210, 211, 212, 213, 214, 215, 240, 241, 242, 243, 244, 245, 270, 271, 272, 273, 274, 275, 300, 301, 302, 303, 304, 305, 330, 331, 332, 333
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2025

Keywords

Comments

Numbers k for which A276086(k) is not a multiple of 5.
Odd bisection gives numbers that are congruent to {0, 2, 4} mod 30, thus when halved, congruent to {0, 1, 2} mod 15, thus terms of A267711, numbers k such that k mod 3 = k mod 5.

Crossrefs

Cf. A276086, A380484 (characteristic function), A380486 (complement).
Cf. also A267711 (odd bisection halved).

Programs

  • Mathematica
    Select[Range[0, 333], Mod[#, 30] < 6 &] (* Amiram Eldar, Feb 03 2025 *)
  • PARI
    is_A380485(n) = !((n\6)%5);
    
  • PARI
    is_A380485(n) = ((n%30)<6);

Formula

a(2*n-1) = 2*A267711(n).

A267747 Numbers k such that k mod 2 = k mod 3 = k mod 5.

Original entry on oeis.org

0, 1, 30, 31, 60, 61, 90, 91, 120, 121, 150, 151, 180, 181, 210, 211, 240, 241, 270, 271, 300, 301, 330, 331, 360, 361, 390, 391, 420, 421, 450, 451, 480, 481, 510, 511, 540, 541, 570, 571, 600, 601, 630, 631, 660, 661, 690, 691, 720, 721, 750, 751, 780, 781, 810, 811, 840
Offset: 1

Views

Author

Mikk Heidemaa, Jan 20 2016

Keywords

Comments

Numbers k such that k == 0 or 1 (mod 30). - Robert Israel, Jan 20 2016

Crossrefs

Cf. A267711.

Programs

  • Magma
    [15*n-7*(-1)^n-22: n in [1..60]]; // Vincenzo Librandi, Jan 21 2016
  • Mathematica
    Table[15*n - 7*(-1)^n - 22, {n, 1000}] (* Or *)
    Select[ Range[0, 20000], (Mod[#, 2]==Mod[#, 3]==Mod[#, 5]) &]
    LinearRecurrence[{1,1,-1},{0,1,30},60] (* Harvey P. Dale, Nov 15 2021 *)
  • PARI
    concat(0, Vec(x^2*(29*x+1)/((x-1)^2*(x+1)) + O(x^60))) \\ Colin Barker, Jan 21 2016
    

Formula

a(n) = 15*n - 7*(-1)^n - 22.
G.f.: x^2*(29*x+1)/((x-1)^2*(x+1)).
Showing 1-2 of 2 results.