A267550 Primes p such that p (mod 3) = p (mod 5) = p (mod 7).
2, 107, 211, 317, 421, 631, 947, 1051, 1367, 1471, 1787, 1997, 2207, 2311, 2417, 2521, 2731, 2837, 3257, 3361, 3467, 3571, 3677, 4201, 4517, 4621, 4831, 4937, 5147, 5881, 5987, 6091, 6197, 6301, 6827, 7247, 7351, 7457, 7561, 7877, 8087, 8191, 8297, 8821, 9137, 9241, 9661, 9767, 9871, 10501
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(10000) | p mod 3 eq p mod 5 and p mod 5 eq p mod 7]; // Vincenzo Librandi, Jan 17 2016
-
Mathematica
Select[ Prime[ Range[10000]], (Mod[#,3] == Mod[#,5] == Mod[#,7]) &](*Or*) Select[ Prime[ Range[10000]], 0 < Mod[#,105] < 3 &] Select[Prime[Range[10000]],Length[Union[Mod[#,{3,5,7}]]]==1&] (* Harvey P. Dale, Oct 11 2019 *)
-
PARI
lista(nn) = forprime(p=2, nn, if(p%3 == p%5 && p%5 == p%7, print1(p, ", "))); \\ Altug Alkan, Jan 25 2016
Extensions
More terms from Vincenzo Librandi, Jan 17 2016
Comments