cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267654 Irregular triangle of palindromic subsequences. Every row has 2*n+1 terms. From the second row, there are only two alternated numbers: 2*n+4 and 2*n+2.

Original entry on oeis.org

2, 4, 2, 4, 6, 4, 6, 4, 6, 8, 6, 8, 6, 8, 6, 8, 10, 8, 10, 8, 10, 8, 10, 8, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 14, 12, 14, 12, 14, 12, 14, 12, 14, 12, 14, 12, 14, 16, 14, 16, 14, 16, 14, 16, 14, 16, 14, 16, 14, 16, 14, 16
Offset: 0

Views

Author

Paul Curtz, Jan 19 2016

Keywords

Comments

Row sums = 2, 10, 26, 50, ... = A069894(n).
Starting from A053186(n) =
0, for b(n)
0, 1, 2, for c(n)
0, 1, 2, 3, 4, for d(n)
0, 1, 2, 3, 4, 5, 6,
etc,
a(n) is used for
1) b(n+1) = b(n) + (a(0)=2) i.e. 0, 2, 4, 6, ... = A005843(n).
2) c(n+3) = c(n) + (period 3:repeat 4, 2, 4) i.e. 0, 1, 2, 4, 3, 6, 8, ... = A265667(n).
3) d(n+5) = d(n) + (period 5:repeat 6, 4, 6, 4, 6) i.e. 0, 1, 2, 3, 4, 6, 5, 8, 7, 10, ... = A265734(n).
Etc.
a(n) has a companion with the same terms,differently distributed,yielding permutations of the nonnegative numbers. See A265672.
a(n) other writing (by pairs):
2, 4, 2, 4,
6, 4, 6, 4,
6, 8, 6, 8, 6, 8, 6, 8,
10 8, 10, 8, 10, 8, 10, 8,
10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12,
14, 12, 14, 12, 14, 12, 14, 12, 14, 12, 14, 12,
etc.
First column: A168276(n+2). Second column: A168273(n+2).
Row sums: 12, 20, 56, 72, ... = 4*A074378(n+1).
The last term of the successive rows is the number of their terms.
Main diagonal: A005843(n+1).

Examples

			The triangle is
2,
4, 2, 4,
6, 4, 6, 4, 6,
8, 6, 8, 6, 8, 6, 8,
etc.
		

Crossrefs

Programs

  • Mathematica
    Table[2 (n - 1) + 2 (Boole@ OddQ@ k + 1), {n, 0, 7}, {k, 2 n + 1}] // Flatten (* Michael De Vlieger, Jan 19 2016 *)

Formula

a(n) = 2 * A086520(n+2).
a(2n) = 4*n + 2 times 4*n + 2 = 2, 2, 6, 6, 6, 6, 6, 6, 10,....
a(2n+1) = 4*(n+1) times 4*(n+1) = 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 12, ....