cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267685 Decimal representation of the n-th iteration of the "Rule 203" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 27, 119, 495, 2015, 8127, 32639, 130815, 523775, 2096127, 8386559, 33550335, 134209535, 536854527, 2147450879, 8589869055, 34359607295, 137438691327, 549755289599, 2199022206975, 8796090925055, 35184367894527, 140737479966719, 562949936644095
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Conjectures from Barker confirmed by later formulas. - Ray Chandler, Aug 09 2025

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=203; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)
  • Python
    print([1, 4]+[2*4**n - 2**n - 1 for n in range(2, 50)]) # Karl V. Keller, Jr., Jun 07 2022

Formula

From Colin Barker, Jan 19 2016 and Apr 17 2019: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>4.
G.f.: (1-3*x+13*x^2-22*x^3+8*x^4) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
a(n) = A129868(n) for n >= 2. - Georg Fischer, Mar 26 2019
a(n) = 2*4^n - 2^n - 1 for n > 1. - Karl V. Keller, Jr., Jun 07 2022