cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267691 a(n) = (n + 1)*(6*n^4 - 21*n^3 + 31*n^2 - 31*n + 30)/30.

Original entry on oeis.org

1, 1, 2, 18, 99, 355, 980, 2276, 4677, 8773, 15334, 25334, 39975, 60711, 89272, 127688, 178313, 243849, 327370, 432346, 562667, 722667, 917148, 1151404, 1431245, 1763021, 2153646, 2610622, 3142063, 3756719, 4464000, 5274000, 6197521, 7246097, 8432018, 9768354
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2016

Keywords

Examples

			a(0) = 1,
a(1) = 1 + 0^4 = 1,
a(2) = 1 + 1^4 = 2,
a(3) = 2 + 2^4 = 18,
a(4) = 18+ 3^4 = 99, etc.
		

Crossrefs

Essentially the same as A000538.
Cf. A013662 (zeta(4)).

Programs

  • Magma
    [(n+1)*(6*n^4-21*n^3+31*n^2-31*n+30)/30: n in [0..35]]; // Vincenzo Librandi, Jan 20 2016
  • Mathematica
    Table[(n + 1) (6 n^4 - 21 n^3 + 31 n^2 - 31 n + 30)/30, {n, 0, 30}]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 1, 2, 18, 99, 355}, 40] (* Vincenzo Librandi, Jan 20 2016 *)
  • PARI
    a(n)=(n+1)*(6*n^4-21*n^3+31*n^2-31*n+30)/30 \\ Charles R Greathouse IV, Jan 19 2016
    
  • PARI
    Vec((1-5*x+11*x^2+x^3+16*x^4)/(x-1)^6 + O(x^100)) \\ Altug Alkan, Jan 19 2016
    

Formula

G.f.: (1 - 5*x + 11*x^2 + x^3 + 16*x^4)/(1 - x)^6.
a(n + 1) = a(n) + n^4.
a(n + 1) = A000538(n) + 1.
a(n + 2) - a(n) = A008514(n).
Sum_{n>=0} 1/a(n) = 2.570450909491318975...
Sum_{n>=1} 1/(a(n + 1) - a(n)) = zeta(4) = Pi^4/90.