A267707 a(n) = A000217(A000217(n)+1).
1, 3, 10, 28, 66, 136, 253, 435, 703, 1081, 1596, 2278, 3160, 4278, 5671, 7381, 9453, 11935, 14878, 18336, 22366, 27028, 32385, 38503, 45451, 53301, 62128, 72010, 83028, 95266, 108811, 123753, 140185, 158203, 177906, 199396, 222778, 248160, 275653, 305371
Offset: 0
Examples
For n=0, a(0)=1*2/2=1. For n=2, a(2)=4*5/2=10.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
I:=[1,3,10,28,66]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Jan 22 2016
-
Mathematica
S[n_] :=n*(n+1)/2; Table[S[S[n]+1], {n, 0, 50}] Table[(n*(n+1)/2+1)(n*(n+1)/2+2)/2, {n, 0, 50}] Table[(n^4+2*n^3+7*n^2+6*n+8)/8, {n, 0, 50}] CoefficientList[Series[(1 - 2 x + 5 x^2 - 2 x^3 + x^4) / (1 - x)^5, {x, 0, 33}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 10, 28, 66}, 50] (* Vincenzo Librandi, Jan 22 2016 *)
-
PARI
for(n=0,50,print1((n^4+2*n^3+7*n^2+6*n+8)/8 ", "))
Formula
a(n) = (n^4+2n^3+7n^2+6n+8)/8 = (n^2+n+2)(n^2+n+4)/8.
G.f.: (1-2*x+5*x^2-2*x^3+x^4)/(1-x)^5. - Vincenzo Librandi, Jan 22 2016
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Vincenzo Librandi, Jan 22 2016
Comments