cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267711 Numbers k such that k mod 3 = k mod 5.

Original entry on oeis.org

0, 1, 2, 15, 16, 17, 30, 31, 32, 45, 46, 47, 60, 61, 62, 75, 76, 77, 90, 91, 92, 105, 106, 107, 120, 121, 122, 135, 136, 137, 150, 151, 152, 165, 166, 167, 180, 181, 182, 195, 196, 197, 210, 211, 212, 225, 226, 227, 240, 241, 242, 255, 256, 257, 270, 271, 272, 285, 286
Offset: 1

Views

Author

Mikk Heidemaa, Jan 19 2016

Keywords

Comments

Periodic differences between the consecutive terms (1,1,13,1,1,13,1,1,13,1,1...).

Crossrefs

Cf. A267540.

Programs

  • Mathematica
    Select[ Range[0, 10000], (Mod[#, 3] == Mod[#, 5]) &]
  • PARI
    lista(nn) = for(n=0, nn, if(n%3 == n%5, print1(n, ", "))); \\ Altug Alkan, Jan 19 2016
    
  • PARI
    concat(0, Vec(x^2*(1+x+13*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jan 28 2016

Formula

a(n) = (1/3)*(15*n - 12*cos((2*Pi*n)/3) + 4*sqrt(3)*sin((2*Pi*n)/3) - 27).
G.f.: x^2*(13*x^2+x+1) / ((x-1)^2*(x^2+x+1)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4. - Colin Barker, Jan 28 2016