cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267755 Expansion of (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/(1 - x - x^5 + x^6).

Original entry on oeis.org

1, 3, 4, 5, 9, 12, 14, 15, 16, 20, 23, 25, 26, 27, 31, 34, 36, 37, 38, 42, 45, 47, 48, 49, 53, 56, 58, 59, 60, 64, 67, 69, 70, 71, 75, 78, 80, 81, 82, 86, 89, 91, 92, 93, 97, 100, 102, 103, 104, 108, 111, 113, 114, 115, 119, 122, 124, 125, 126, 130, 133, 135, 136, 137
Offset: 0

Views

Author

Bruno Berselli, Jan 20 2016

Keywords

Comments

(m^k-1)/11 is a nonnegative integer when
. m is a member of this sequence and k is an odd multiple of 5 (A017329),
. m is a member of A017401 and k is odd but not multiple of 5 (A045572),
. m is a member of A175885 and k is even but not multiple of 5 (A217562),
. m is a member of A160542 and k is a positive multiple of 10 (A008592),
apart from the trivial case in which k=0.
Also, numbers that are congruent to {1, 3, 4, 5, 9} mod 11. Therefore, the product of two terms belongs to the sequence.
Union of this sequence and A267541 is A160542.
a(n) is prime for n = 1, 3, 10, 14, 17, 21, 24, 27, 30, 33, 40, 44, 47, ...

Examples

			From the linear recurrence:
(-A267541) ..., -13, -10, -8, -7, -6, -2, 1, 3, 4, 5, 9, 12, ... (A267755)
		

Crossrefs

Related sequences (see the first comment): A017401, A160542, A175885.

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+x^2+x^3+4*x^4+2*x^5)/(1-x-x^5+x^6)));
    
  • Magma
    I:=[1,3,4,5,9,12]; [n le 6 select I[n] else Self(n-1)+Self(n-5)-Self(n-6): n in [1..70]]; // Vincenzo Librandi, Jan 21 2016
  • Maple
    gf := (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/(1 - x - x^5 + x^6): deg := 64: series(gf, x, deg): seq(coeff(%, x, n), n=0..deg-1); # Peter Luschny, Jan 21 2016
  • Mathematica
    CoefficientList[Series[(1 + 2 x + x^2 + x^3 + 4 x^4 + 2 x^5)/(1 - x - x^5 + x^6), {x, 0, 70}], x]
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 3, 4, 5, 9, 12}, 70]
    Select[Range[140], MemberQ[{1, 3, 4, 5, 9}, Mod[#, 11]]&]
  • PARI
    Vec((1+2*x+x^2+x^3+4*x^4+2*x^5)/(1-x-x^5+x^6)+O(x^70))
    
  • Sage
    gf = (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/(1 - x - x^5 + x^6)
    print(taylor(gf, x, 0, 63).list()) # Peter Luschny, Jan 21 2016
    

Formula

G.f.: (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(-n) = -A267541(n-1).
a(n) = n + 1 + 2*floor(n/5) + 3*floor((n+1)/5) + floor((n+4)/5). - Ridouane Oudra, Sep 06 2023