cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267796 a(n) = (n+1)*4^(2n+1).

Original entry on oeis.org

4, 128, 3072, 65536, 1310720, 25165824, 469762048, 8589934592, 154618822656, 2748779069440, 48378511622144, 844424930131968, 14636698788954112, 252201579132747776, 4323455642275676160, 73786976294838206464, 1254378597012249509888, 21250649172913403461632
Offset: 0

Views

Author

Ralf Steiner, Jan 24 2016

Keywords

Comments

The partial sums of A001246(n)/a(n) converge absolutely. This series is also the hypergeometric function 1/4 * 4F3(1/2,1/2,1,1;2,2,2;1). - Ralf Steiner, Feb 09 2016

Examples

			For n=3, a(3) = (3+1)*4^(2*3+1) = 4*4^7 = 65536.
		

Crossrefs

Programs

Formula

a(n) = A013709(n)*(n+1).
From Colin Barker, Mar 23 2017: (Start)
G.f.: 4 / (1 - 16*x)^2.
a(n) = 32*a(n-1) - 256*a(n-2) for n>1. (End)
From Amiram Eldar, Apr 17 2022: (Start)
a(n) = A193132(n+1)/3.
Sum_{n>=0} 1/a(n) = 4*log(16/15).
Sum_{n>=0} (-1)^n/a(n) = 4*log(17/16). (End)

Extensions

More terms from Michel Marcus, Jan 28 2016