cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267862 Number of planar lattice convex polygonal lines joining the origin and the point (n,n).

Original entry on oeis.org

1, 2, 5, 13, 32, 77, 178, 399, 877, 1882, 3959, 8179, 16636, 33333, 65894, 128633, 248169, 473585, 894573, 1673704, 3103334, 5705383, 10405080, 18831761, 33836627, 60378964, 107035022, 188553965, 330166814, 574815804, 995229598, 1714004131, 2936857097
Offset: 0

Views

Author

Christoph Koutschan, Apr 07 2016

Keywords

Comments

In other words, we are counting walks on the integer lattice N^2 that start at (0,0) and end at (n,n); they may take arbitrary steps, but the slopes of the steps in the walk must strictly increase. As a result, we obtain a convex polygon when joining the two endpoints of the walk with the point (0,n).

Examples

			The two walks for n = 1 are
(0,0) -> (1,1)
(0,0) -> (1,0) -> (1,1).
The five possibilities for n = 2 are
(0,0) -> (2,2)
(0,0) -> (1,0) -> (2,1) -> (2,2)
(0,0) -> (1,0) -> (2,2)
(0,0) -> (2,0) -> (2,2)
(0,0) -> (2,1) -> (2,2).
		

Crossrefs

Programs

  • Mathematica
    a[i_Integer, j_Integer, s_] := a[i, j, s] = If[i === 0, 1, Sum[a[i - x, j - y, y/x], {x, 1, i}, {y, Floor[s*x] + 1, j}]]; a[n_Integer] := a[n] = 1 + Sum[a[n - x, n - y, y/x], {x, 1, n}, {y, 0, x - 1}]; Flatten[{1, Table[a[n], {n, 30}]}]
    nmax = 20; p = (1 - x)*(1 - y); Do[Do[p = Expand[p*If[GCD[i, j] == 1, (1 - x^i*y^j), 1]]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {i, 1, nmax}], {j, 1, nmax}]; p = Expand[Normal[Series[1/p, {x, 0, nmax}, {y, 0, nmax}]]]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 08 2016 *)

Formula

a(n) = [x^n*y^n] 1/((1-x)*(1-y)*Product_{i>0,j>0,gcd(i,j)=1} (1-x^i*y^j)).
An asymptotic formula for a(n) is given by Bureaux and Enriquez: a(n) ~ e^(-2*zeta'(-1))/((2*Pi)^(7/6)*sqrt(3)*kappa^(1/18)*n^(17/18)) * e^(3*kappa^(1/3)*n^(2/3)+...) where kappa := zeta(3)/zeta(2) and zeta denotes the Riemann zeta function.