A267999 Numbers n > 1 such that gcd(n, 2^n - 2) = 1.
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611, 623
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [2..800] | Gcd(n, 2^n-2) eq 1]; // Vincenzo Librandi, Jan 24 2016
-
Maple
select(n -> igcd(n, 2&^n-2 mod n)=1, [seq(i,i=3..10000, 2)]);
-
Mathematica
Select[Range[2, 768], GCD[#, 2^# - 2] == 1 &] (* or *) Select[Range[2, 768], OddQ@ # && GCD[#, 2^(# - 1) - 1] == 1 &] (* Michael De Vlieger, Jan 24 2016 *)
-
PARI
lista(nn) = for(n=2, nn, if(gcd(n, 2^n - 2) == 1, print1(n, ", "))); \\ Altug Alkan, Jan 24 2016
Formula
a(n) = A121707(n) for n < 62. A121707(62) = 697 = A306097(1) is the first term of A121707 not in this sequence. - M. F. Hasler, Nov 09 2018
Comments