A268046 Decimal expansion of Sum_{k>0} (k+1)/(k*((k+1)^2+1)).
8, 7, 4, 2, 7, 0, 0, 1, 6, 4, 9, 6, 2, 9, 5, 5, 0, 6, 0, 0, 6, 2, 2, 0, 6, 8, 3, 7, 7, 7, 1, 5, 6, 8, 2, 1, 9, 8, 2, 0, 3, 9, 2, 8, 7, 0, 5, 3, 6, 4, 0, 9, 4, 3, 8, 0, 6, 9, 0, 9, 7, 2, 1, 6, 9, 6, 9, 6, 3, 5, 4, 4, 7, 2, 7, 6, 2, 7, 6, 7, 3, 0, 3, 1, 9, 9, 1, 6, 6, 2, 2, 7, 3, 2, 9, 7, 9, 5, 6, 6
Offset: 0
Examples
.8742700164962955060062206837771568219820392870536409438069097216969635...
Crossrefs
Cf. A268086: (1-i)*(H(1-i)+i*H(1+i))/4.
Programs
-
Maple
((1+I)*(harmonic(1-I)-I*harmonic(1+I)))/4: Re(evalf(%, 101)); # Peter Luschny, Jan 27 2016
-
Mathematica
(1 + I)*(HarmonicNumber[1 - I] - I*HarmonicNumber[1 + I])/4 // Re // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Jan 26 2016 *)
-
Sage
# Warning: Floating point calculation. Adjust precision as needed # and use some guard digits! from mpmath import mp, chop, psi, pi, coth mp.dps = 109; mp.pretty = True chop((psi(0,I-1)-psi(0,1)-I-1)/2-pi*(I-1)*coth(pi)/4) # Peter Luschny, Jan 27 2016
Formula
Equals (1 + i)*(H(1-i) - i*H(1+i))/4, where H(z) is a harmonic number with complex argument.
Equals (Psi(i-1)-Psi(1)-i-1)/2 - Pi*(i-1)*coth(Pi)/4, where Psi(x) is the digamma function. - Peter Luschny, Jan 27 2016
Comments