cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339135 Decimal expansion of J = 2*log(2)/3 - Re(Psi(1/2 + i*sqrt(3)/2)), where Psi is the digamma function and i=sqrt(-1).

Original entry on oeis.org

6, 7, 7, 0, 2, 4, 6, 7, 9, 1, 0, 2, 9, 9, 3, 3, 4, 7, 0, 1, 6, 2, 4, 8, 0, 5, 4, 3, 3, 3, 4, 2, 3, 6, 1, 9, 2, 5, 9, 6, 1, 4, 9, 4, 6, 0, 7, 8, 9, 4, 3, 9, 1, 7, 9, 2, 3, 9, 0, 9, 8, 7, 2, 6, 0, 0, 8, 9, 7, 7, 1, 2, 4, 2, 4, 5, 7, 6, 0, 4, 6, 5, 7, 8, 1, 5, 5, 6, 0, 5, 4, 3, 4, 9, 0, 2, 4, 1, 3, 4, 6, 3, 9, 7, 1, 2, 5, 9, 2
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2020

Keywords

Comments

Generally in the literature there is no explicit formula for the real part of the function Psi(x + i*y) when y != 0.
Up to now there is no explicit formula expressing the constant J in terms of other mathematical constants.

Examples

			J = 0.677024679102993347...
		

Crossrefs

Programs

  • Maple
    evalf(1 + 2*log(2)/3 - Psi(0, 5/2 - sqrt(3)*I/2)/2 - Psi(0, 5/2 + sqrt(3)*I/2)/2, 100); # Vaclav Kotesovec, Nov 26 2020
  • Mathematica
    RealDigits[N[Re[2 Log[2]/3 - PolyGamma[0, 1/2 + I Sqrt[3]/2]], 110]][[1]]
    Chop[N[1 + 2*Log[2]/3 - PolyGamma[0, 5/2 - I*Sqrt[3]/2]/2 - PolyGamma[0, 5/2 + I*Sqrt[3]/2]/2, 120]] (* Vaclav Kotesovec, Nov 26 2020 *)
  • PARI
    2*log(2)/3 - real(psi(1/2 + I*sqrt(3)/2)) \\ Michel Marcus, Nov 25 2020

Formula

J = -log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) - Re(Psi(1/4 + i*sqrt(3)/4)).
J = -log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/2) - Re(Psi(3/4 + i*sqrt(3)/4)).
J = 3 + gamma + (2/3)*log(2) - (1/2)* sqrt(3)*Pi*tanh(Pi*sqrt(3)/2) - 3*(Sum_{n>=1} zeta(3*n)-1), where zeta is Riemann zeta function and gamma is Euler gamma constant see A001620.
J = -(1/2) + gamma + (2/3)*log(2) + (3/2)*(Sum_{n>=1} zeta(3*n+1)-1).
J = -1 + gamma + (2/3)*log(2) + (1/2)*sqrt(3)*Pi*tanh(Pi*sqrt(3)/2) - 3*(Sum_{n>=0} zeta(3*n+2)-1).
J = -(3/8) + gamma + (2/3)*log(2) + (3/2)*(Sum_{n>=1} zeta(6*n+1)-1).
J = 1/4 + gamma + (2/3)*log(2) - 3*(Sum_{n>=0} zeta(6*n+3)-1).
J = -(1/4) + gamma + (2/3)*log(2) - 3 (Sum_{n>=0} zeta(6*n+5)-1).
J = (11/12 - (1/4)*i*sqrt(3))*Psi(1/2 + i*sqrt(3)/2) + (-(5/4) + (1/4)*i*sqrt(3))*Psi(-(1/2) - i*sqrt(3)/2) + (-(17/24) + (1/8)*i*sqrt(3))* Psi(1/4 + i*sqrt(3)/4) + (3/8 - (1/8)*i*sqrt(3))*Psi(-(1/4) - i*sqrt(3)/4) + (-(17/24) + (1/8)*i*sqrt(3))*Psi(3/4 + i*sqrt(3)/4) + (3/8 - (1/8)*i*sqrt(3))*Psi(-(3/4) - i*sqrt(3)/4).
J = 2*log(2)/3 - Integral_{t=0..infinity} cosh(t)/t - sinh(t)/t - (cos(sqrt(3)*t)*cosh(t/2))/(1 - cosh(t) + sinh(t)) + (cos(sqrt(3)*t)*sinh(t/2))/(1 - cosh(t) + sinh(t)).
J = gamma + (1/6)*Sum_{t>=1} (6*t^3-4*t^2-4*t-1)/(t*(t+1)*(2t+1)*(t^2+t+1)).
Equals 1 + 2*log(2)/3 - Psi(0, 5/2 - i*sqrt(3)/2)/2 - Psi(0, 5/2 + i*sqrt(3)/2)/2. - Vaclav Kotesovec, Nov 26 2020

A268086 Decimal expansion of Sum_{k>0} 1/(k*((k+1)^2+1)).

Original entry on oeis.org

2, 9, 7, 5, 9, 5, 9, 6, 9, 0, 2, 7, 7, 1, 4, 3, 3, 1, 8, 7, 2, 1, 6, 9, 8, 8, 9, 0, 2, 7, 1, 5, 6, 3, 3, 1, 5, 3, 6, 3, 8, 3, 0, 2, 0, 6, 4, 9, 8, 2, 4, 2, 7, 8, 2, 3, 1, 8, 4, 7, 2, 3, 7, 3, 0, 6, 8, 0, 9, 2, 9, 6, 8, 0, 9, 3, 1, 7, 6, 5, 1, 2, 8, 8, 4, 2, 6, 1, 1, 0, 5, 1, 3, 9, 0, 2, 4, 6, 4, 7
Offset: 0

Views

Author

Bruno Berselli, Jan 26 2016

Keywords

Comments

Also, decimal expansion of Integral_{x=0..1} (2 - (1-i)*x^(1-i) - (1+i)*x^(1+i))/(4 - 4*x) dx, where i is the imaginary unit.

Examples

			.297595969027714331872169889027156331536383020649824278231847237306809...
		

Crossrefs

Cf. A062158: numbers of the form k*((k+1)^2+1), with k>-2.
Cf. A268046: (1+i)*(H(1-i)-i*H(1+i))/4.

Programs

  • Maple
    ((1-I)*(harmonic(1-I) + I*harmonic(1+I)))/4:
    Re(evalf(%, 106)); # Peter Luschny, Jan 27 2016
  • Mathematica
    (1 - I)*(HarmonicNumber[1 - I] + I*HarmonicNumber[1 + I])/4 // Re // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Jan 26 2016 *)
  • Sage
    # Warning: Floating point calculation. Adjust precision as needed
    # and use some guard digits!
    from mpmath import mp, chop, psi, coth, pi
    mp.dps = 108; mp.pretty = True
    chop((psi(0,I-1)-psi(0,1)-I+1)/2-pi*(I+1)*coth(pi)/4) # Peter Luschny, Jan 27 2016

Formula

Equals (1 - i)*(H(1-i) + i*H(1+i))/4, where H(z) is a harmonic number with complex argument.
Equals (Psi(i-1)-Psi(1)-i+1)/2 - Pi*(i+1)*coth(Pi)/4, where Psi(x) is the digamma function. - Peter Luschny, Jan 27 2016
Showing 1-2 of 2 results.