A267982 a(n) = 4*n*Catalan(n)^2.
0, 4, 32, 300, 3136, 35280, 418176, 5153148, 65436800, 851005584, 11284224640, 152054927024, 2076911622912, 28698821320000, 400547241561600, 5639401174441500, 80010548981049600, 1142928467041798800, 16425988397113680000, 237364657887402183600
Offset: 0
Examples
For n=3, a(3)=300.
Links
- Ralf Steiner, Beispiele zur modifizierten Wallis-Lambert-Reihe (in German).
Programs
-
Magma
[Catalan(n)^2*4*n: n in [0..20]]; // Vincenzo Librandi, Jan 24 2016
-
Mathematica
Table[CatalanNumber[n]^2 (4 n + 0), {n, 0, 20}]
-
PARI
a(n) = 4*n*(binomial(2*n, n)/(n+1))^2; \\ Michel Marcus, Jan 24 2016
-
Python
from _future_ import division A267982_list, b = [0], 4 for n in range(1,10**2): A267982_list.append(b) b = b*4*(n+1)*(2*n+1)**2//(n*(n+2)**2) # Chai Wah Wu, Jan 28 2016
Formula
a(n) = 4*A268085(n).
a(n+1) = a(n)*4*(n+1)*(2*n+1)^2/(n*(n+2)^2) for n > 0. - Chai Wah Wu, Jan 28 2016
Extensions
More terms from Vincenzo Librandi, Jan 24 2016
Comments