cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268175 Smallest number k such that k*(2^(2*A000043(n))-1)+1 is prime.

Original entry on oeis.org

2, 2, 4, 6, 12, 82, 14, 22, 244, 44, 120, 94, 1010, 764, 834, 1076, 516, 3252, 1384, 1664, 7040, 6104, 20942, 14344, 37142, 12522, 12554, 64160, 32172, 44460, 49400, 291726
Offset: 1

Views

Author

Pierre CAMI, Jan 28 2016

Keywords

Comments

The numbers k*(2^(2*A000043(n))-1)+1 may be written as k*(2^A000043(n)-1)*(2^A000043(n)+1)+1 or k*Mersenne(n)*(Mersenne(n)+2)+1 and so may be proved primes.
All the numbers a(n)*(2^(2*A000043(n))-1)+1 for n=1 to 32 have been proved to be primes.

Examples

			2*(2^(2*2)-1)+1 = 31 (prime) and A000043(1) = 2, so a(1) = 2.
2*(2^(2*3)-1)+1 = 127 (prime) and A000043(2) = 3, so a(2) = 2.
		

Crossrefs

Cf. A000043.

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657};
    lst = {}; maxk = 5000; maxn = 15;
    For[n = 1, n ≤ maxn, n++,
      For[k = 0, k ≤ maxk, k++,
        If[PrimeQ[k*(2^(2*A000043[[n]]) - 1) + 1], AppendTo[lst, k]; Break[]]
      ]
    ];
    lst (* Robert Price, Apr 05 2016 *)