A268192 Triangle read by rows: T(n,k) is the number of partitions of weight k among the complements of the partitions of n.
1, 2, 2, 1, 3, 0, 2, 2, 2, 0, 2, 1, 4, 0, 2, 1, 2, 0, 2, 2, 2, 2, 2, 0, 4, 0, 0, 2, 1, 4, 1, 2, 0, 6, 0, 2, 2, 1, 0, 2, 0, 2, 3, 2, 0, 6, 0, 2, 4, 4, 0, 2, 0, 2, 2, 0, 0, 2, 1, 4, 0, 6, 0, 2, 4, 5, 0, 6, 0, 4, 2, 0, 0, 4, 1, 0, 0, 2, 0, 2, 2, 4, 0, 2, 6, 5, 0, 6, 0, 8
Offset: 1
Examples
Row 4 is 3,0,2; indeed, the complements of [4], [3,1], [2,2], [2,1,1], [1,1,1,1] are: empty, [2], empty, [1,1], empty; their weights are 0, 2, 0, 2, 0, respectively. From _Gus Wiseman_, Sep 24 2019: (Start) Triangle begins: 1 2 2 1 3 0 2 2 2 0 2 1 4 0 2 1 2 0 2 2 2 2 2 0 4 0 0 2 1 4 1 2 0 6 0 2 2 1 0 2 0 2 3 2 0 6 0 2 4 4 0 2 0 2 2 0 0 2 1 4 0 6 0 2 4 5 0 6 0 4 2 0 0 4 1 0 0 2 0 2 2 4 0 2 6 5 0 6 0 8 4 0 0 6 2 0 2 2 0 2 0 2 0 0 2 1 Row n = 8 counts the following partitions: 8 332 53 62 71 521 4211 611 5111 44 22211 422 2111111 32111 311111 41111 2222 431 11111111 3221 3311 221111 (End)
Links
- Alois P. Heinz, Rows n = 1..70, flattened
Programs
-
Maple
q := 10: with(combinat): a := proc (i, j) options operator, arrow: partition(i)[j] end proc: P[q] := 0: for j to numbpart(q) do P[q] := sort(P[q]+t^(nops(a(q, j))*max(a(q, j))-q)) end do: P[q] := P[q]; # second Maple program: b:= proc(n, i, l) option remember; expand(`if`(n=0 or i=1, x^(`if`(l=0, 0, n*(l-i))), b(n, i-1, l)+`if`(i>n, 0, x^(`if`(l=0, 0, l-i))*b(n-i, i, `if`(l=0, i, l))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)): seq(T(n), n=1..15); # Alois P. Heinz, Feb 12 2016
-
Mathematica
b[n_, i_, l_] := b[n, i, l] = Expand[If[n == 0 || i == 1, x^(If[l == 0, 0, n*(l - i)]), b[n, i - 1, l] + If[i > n, 0, x^(If[l == 0, 0, l - i])*b[n - i, i, If[l == 0, i, l]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],Max[#]*Length[#]-n==k&]],{n,1,11},{k,0,Floor[(n-1)/2]*Ceiling[(n-1)/2]}] (* Gus Wiseman, Sep 24 2019 *)
Formula
The weight of the complement of a partition p is (number of parts of p)*(largest part of p) - weight of p.
For a given q, the Maple program yields the generating polynomial of row q.
Comments