cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A326844 Let y be the integer partition with Heinz number n. Then a(n) is the size of the complement, in the minimal rectangular partition containing the Young diagram of y, of the Young diagram of y.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 3, 1, 0, 0, 1, 0, 4, 2, 4, 0, 3, 0, 5, 0, 6, 0, 3, 0, 0, 3, 6, 1, 2, 0, 7, 4, 6, 0, 5, 0, 8, 2, 8, 0, 4, 0, 2, 5, 10, 0, 1, 2, 9, 6, 9, 0, 5, 0, 10, 4, 0, 3, 7, 0, 12, 7, 4, 0, 3, 0, 11, 1, 14, 1, 9, 0, 8, 0, 12, 0, 8, 4, 13, 8, 12, 0, 4, 2, 16, 9, 14, 5, 5, 0, 3, 6, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 7865 is (6,5,5,3), with diagram:
  o o o o o o
  o o o o o .
  o o o o o .
  o o o . . .
The size of the complement (shown in dots) in a 6 X 4 rectangle is 5, so a(7865) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,With[{y=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Max[y]*Length[y]-Total[y]]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A326844(n) = ((bigomega(n)*A061395(n)) - A056239(n)); \\ Antti Karttunen, Feb 10 2023

Formula

a(n) = A001222(n) * A061395(n) - A056239(n).

Extensions

Data section extended up to term a(100) by Antti Karttunen, Feb 10 2023

A361853 Number of integer partitions of n such that (length) * (maximum) = 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 1, 2, 4, 0, 10, 0, 8, 16, 10, 0, 31, 0, 44, 44, 20, 0, 92, 50, 28, 98, 154, 0, 266, 0, 154, 194, 48, 434, 712, 0, 60, 348, 910, 0, 1198, 0, 1120, 2138, 88, 0, 2428, 1300, 1680, 912, 2506, 0, 4808, 4800, 5968, 1372, 140, 0, 14820, 0, 160
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions satisfying (maximum) = 2*(mean).
These are partitions whose diagram has the same size as its complement (see example).

Examples

			The a(6) = 2 through a(12) = 10 partitions:
  (411)   .  (4211)  (621)     (5221)   .  (822)
  (3111)             (321111)  (5311)      (831)
                               (42211)     (6222)
                               (43111)     (6321)
                                           (6411)
                                           (422211)
                                           (432111)
                                           (441111)
                                           (32211111)
                                           (33111111)
The partition y = (6,4,1,1) has diagram:
  o o o o o o
  o o o o . .
  o . . . . .
  o . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(12).
		

Crossrefs

For minimum instead of mean we have A118096.
For length instead of mean we have A237753.
For median instead of mean we have A361849, ranks A361856.
This is the equal case of A361851, unequal case A361852.
The strict case is A361854.
These partitions have ranks A361855.
This is the equal case of A361906, unequal case A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#==2n&]],{n,30}]

A361906 Number of integer partitions of n such that (length) * (maximum) >= 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) >= 2*(mean).
These are partitions whose complement (see example) has size >= n.

Examples

			The a(6) = 2 through a(10) = 15 partitions:
  (411)   (511)    (611)     (621)      (721)
  (3111)  (4111)   (4211)    (711)      (811)
          (31111)  (5111)    (5211)     (5221)
                   (41111)   (6111)     (5311)
                   (311111)  (42111)    (6211)
                             (51111)    (7111)
                             (321111)   (42211)
                             (411111)   (43111)
                             (3111111)  (52111)
                                        (61111)
                                        (421111)
                                        (511111)
                                        (3211111)
                                        (4111111)
                                        (31111111)
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8).
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237752, reverse A237755.
For minimum instead of mean we have A237821, reverse A237824.
For median instead of mean we have A361859, reverse A361848.
The unequal case is A361907.
The complement is counted by A361852.
The equal case is A361853, ranks A361855.
Reversing the inequality gives A361851.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>=2n&]],{n,30}]

A361907 Number of integer partitions of n such that (length) * (maximum) > 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) > 2*(mean).
These are partitions whose complement (see example) has size > n.

Examples

			The a(7) = 3 through a(10) = 11 partitions:
  (511)    (611)     (711)      (721)
  (4111)   (5111)    (5211)     (811)
  (31111)  (41111)   (6111)     (6211)
           (311111)  (42111)    (7111)
                     (51111)    (52111)
                     (411111)   (61111)
                     (3111111)  (421111)
                                (511111)
                                (3211111)
                                (4111111)
                                (31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237751, reverse A237754.
For minimum instead of mean we have A237820, reverse A053263.
The complement is counted by A361851, median A361848.
Reversing the inequality gives A361852.
The equal version is A361853.
For median instead of mean we have A361857, reverse A361858.
Allowing equality gives A361906, median A361859.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>2n&]],{n,30}]

A359360 Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 2, 5, 3, 6, 2, 4, 4, 7, 3, 8, 3, 4, 2, 9, 4, 6, 2, 6, 3, 10, 3, 11, 5, 4, 2, 6, 4, 12, 2, 4, 4, 13, 3, 14, 3, 6, 2, 15, 5, 8, 3, 4, 3, 16, 4, 6, 4, 4, 2, 17, 4, 18, 2, 6, 6, 6, 3, 19, 3, 4, 3, 20, 5, 21, 2, 6, 3, 8, 3, 22, 5, 8, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2022

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n.

Examples

			The partition with Heinz number 7865 is (6,5,5,3), so a(7865) = 4*3 = 12.
		

Crossrefs

Difference of A056239 and A359358.
The opposite version is A326846.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A358195 gives Heinz numbers of rows of A358172, even bisection A241916.

Programs

  • Mathematica
    Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[1,1]]],{n,100}]
  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); bigomega(f)*primepi(f[1, 1])); \\ Michel Marcus, Dec 28 2022

Formula

a(n) = A001222(n) * A055396(n).

A359358 Let y be the integer partition with Heinz number n. Then a(n) is the size of the Young diagram of y after removing a rectangle of the same length as y and width equal to the smallest part of y.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 3, 1, 0, 0, 2, 0, 2, 2, 4, 0, 1, 0, 5, 0, 3, 0, 3, 0, 0, 3, 6, 1, 2, 0, 7, 4, 2, 0, 4, 0, 4, 1, 8, 0, 1, 0, 4, 5, 5, 0, 3, 2, 3, 6, 9, 0, 3, 0, 10, 2, 0, 3, 5, 0, 6, 7, 5, 0, 2, 0, 11, 2, 7, 1, 6, 0, 2, 0, 12, 0, 4, 4, 13
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2022

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 7865 is (6,5,5,3), which has the following diagram. The 3 X 4 rectangle is shown in dots.
  . . . o o o
  . . . o o
  . . . o o
  . . .
The size of the complement is 7, so a(7865) = 7.
		

Crossrefs

The opposite version is A326844.
Row sums of A356958 are a(n) + A001222(n) - 1, Heinz numbers A246277.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.
A326846 = size of the smallest rectangle containing the prime indices of n.
A358195 gives Heinz numbers of rows of A358172, even bisection A241916.

Programs

  • Mathematica
    Table[If[n==1,0,With[{q=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Total[q]-q[[1]]*Length[q]]],{n,100}]

Formula

a(n) = A056239(n) - A001222(n) * A055396(n).
a(n) = A056239(n) - A359360(n).

A188814 Sum of the "complements" of the integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 4, 12, 27, 57, 107, 192, 327, 538, 855, 1329, 2018, 3003, 4402, 6349, 9045, 12720, 17713, 24395, 33335, 45118, 60655, 80888, 107242, 141177, 184905, 240679, 311850, 401860, 515725, 658630, 838006, 1061561, 1340193, 1685271, 2112576, 2638727
Offset: 0

Views

Author

Geoffrey Critzer, Apr 22 2011

Keywords

Comments

Consider the m x k rectangle corresponding to an integer partition p of n, where m is the greatest part of p and k is the number of parts of p. Fit the Ferrers diagram of p inside its corresponding rectangle. a(n) is the number of empty spaces in all such rectangles over all partitions of n.

Examples

			a(4) = 4 because the partitions 4, 2+2, 1+1+1+1 have no empty spaces while the partitions 3+1 and 2+1+1 each have two.
		

References

  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge, 2003, page 145.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        elif i<1 then [0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n) -n*b(n, n)[1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 22 2011, Apr 11 2012
  • Mathematica
    f[list_]:= Total[Select[Reverse[Table[Max[list]-list[[i]],{i,1,Length[list]}]],#>0&]];
    Table[Total[Map[f, IntegerPartitions[n]]],{n,0,30}]
    (* second program: *)
    b[n_, i_] := b[n, i] = Module[{f, g}, If [n==0 || i==1, {1, n}, If[i<1, {0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]];
    a[n_] := Sum[Sum[i, {i, b[n-j, Min[j, n-j]]}]*j, {j, 1, n}]-n*b[n,n][[1]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>0} k*A268192(n,k). - Alois P. Heinz, Feb 12 2016

A361854 Number of strict integer partitions of n such that (length) * (maximum) = 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also strict partitions satisfying (maximum) = 2*(mean).
These are strict partitions where both the diagram and its complement (see example) have size n.

Examples

			The a(n) strict partitions for selected n (A..E = 10..14):
  n=9:  n=12:  n=14:  n=15:  n=16:  n=18:  n=20:  n=21:  n=22:
--------------------------------------------------------------
  621   831    7421   A32    8431   C42    A532   E43    B542
        6321          A41    8521   C51    A541   E52    B632
                                    9432   A631   E61    B641
                                    9531   A721          B731
                                    9621   85421         B821
                                           86321
The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1).
The strict partition y = (8,5,4,2,1) has diagram:
  o o o o o o o o
  o o o o o . . .
  o o o o . . . .
  o o . . . . . .
  o . . . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
		

Crossrefs

For minimum instead of mean we have A241035, non-strict A118096.
For length instead of mean we have A241087, non-strict A237753.
For median instead of mean we have A361850, non-strict A361849.
The non-strict version is A361853.
These partitions have ranks A361855 /\ A005117.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A008289 counts strict partitions by length.
A102627 counts strict partitions with integer mean, non-strict A067538.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[#]*Max@@#==2n&]],{n,30}]

A363132 Number of integer partitions of 2n such that 2*(minimum) = (mean).

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0

Views

Author

Gus Wiseman, May 23 2023

Keywords

Comments

Equivalently, n = (length)*(minimum).

Examples

			The a(2) = 1 through a(7) = 14 partitions:
  (31)  (321)  (62)    (32221)  (93)      (3222221)
        (411)  (3221)  (33211)  (552)     (3322211)
               (3311)  (42211)  (642)     (3332111)
               (4211)  (43111)  (732)     (4222211)
               (5111)  (52111)  (822)     (4322111)
                       (61111)  (322221)  (4331111)
                                (332211)  (4421111)
                                (333111)  (5222111)
                                (422211)  (5321111)
                                (432111)  (5411111)
                                (441111)  (6221111)
                                (522111)  (6311111)
                                (531111)  (7211111)
                                (621111)  (8111111)
                                (711111)
		

Crossrefs

Removing the factor 2 gives A099777.
Taking maximum instead of mean and including odd indices gives A118096.
For length instead of mean and including odd indices we have A237757.
For (maximum) = 2*(mean) see A361851, A361852, A361853, A361854, A361855.
For median instead of mean we have A361861.
These partitions have ranks A363133.
For maximum instead of minimum we have A363218.
For median instead of minimum we have A363224.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(46) from Chai Wah Wu, Sep 21 2023

A362047 Numbers whose prime indices satisfy: (maximum) - (minimum) = (mean).

Original entry on oeis.org

10, 30, 39, 90, 98, 99, 100, 115, 259, 270, 273, 300, 490, 495, 517, 663, 665, 793, 810, 900, 1000, 1083, 1241, 1421, 1495, 1521, 1691, 1911, 2058, 2079, 2125, 2145, 2369, 2430, 2450, 2475, 2662, 2700, 2755, 2821, 3000, 3277, 4247, 4495, 4921, 5587, 5863, 6069
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      10: {1,3}
      30: {1,2,3}
      39: {2,6}
      90: {1,2,2,3}
      98: {1,4,4}
      99: {2,2,5}
     100: {1,1,3,3}
     115: {3,9}
     259: {4,12}
     270: {1,2,2,2,3}
     273: {2,4,6}
     300: {1,1,2,3,3}
The prime indices of 490 are {1,3,4,4}, with minimum 1, maximum 4, and mean 3, and 4-1 = 3, so 490 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A361862.
For minimum instead of mean we have A361908, counted by A118096.
A055396 gives minimum prime index, A061395 maximum.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A326844 gives the diagram complement size of Heinz partition.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]-Min@@prix[#]==Mean[prix[#]]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A362047_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(primepi(max(f:=factorint(n)))-primepi(min(f)))*sum(f.values())==sum(primepi(i)*j for i, j in f.items()),count(max(startvalue,2)))
    A362047_list = list(islice(A362047_gen(),20)) # Chai Wah Wu, Apr 13 2023

Formula

A359360(a(n)) = A326844(a(n)).
A243055(a(n)) = A061395(a(n)) - A055396(a(n))
= A326567(a(n))/A326568(a(n))
= A056239(a(n))/A001222(a(n)).
Showing 1-10 of 10 results.