cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.

Crossrefs

Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
Sum of prime indices of a(n) is A359358(n) + A001222(n) - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    a246277[n_Integer] := Module[{f, p, a064989, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 1,
        True, NextPrime[x, -1]];
      a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
      a[1] = 0;
      a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
    a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; two different variants, the second one employing memoizing definec-macro)
    (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
    (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
    

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022

A359360 Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 2, 5, 3, 6, 2, 4, 4, 7, 3, 8, 3, 4, 2, 9, 4, 6, 2, 6, 3, 10, 3, 11, 5, 4, 2, 6, 4, 12, 2, 4, 4, 13, 3, 14, 3, 6, 2, 15, 5, 8, 3, 4, 3, 16, 4, 6, 4, 4, 2, 17, 4, 18, 2, 6, 6, 6, 3, 19, 3, 4, 3, 20, 5, 21, 2, 6, 3, 8, 3, 22, 5, 8, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2022

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n.

Examples

			The partition with Heinz number 7865 is (6,5,5,3), so a(7865) = 4*3 = 12.
		

Crossrefs

Difference of A056239 and A359358.
The opposite version is A326846.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A358195 gives Heinz numbers of rows of A358172, even bisection A241916.

Programs

  • Mathematica
    Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[1,1]]],{n,100}]
  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); bigomega(f)*primepi(f[1, 1])); \\ Michel Marcus, Dec 28 2022

Formula

a(n) = A001222(n) * A055396(n).

A356958 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (b-a+1, ..., y-a+1, z-a+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 2, 1, 3, 3, 5, 1, 1, 2, 1, 6, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 7, 2, 1, 2, 2, 8, 5, 1, 1, 3, 2, 4, 1, 5, 1, 2, 9, 1, 1, 1, 2, 1, 3, 3, 6, 1, 6, 2, 2, 2, 3, 1, 1, 4, 7, 10, 1, 2, 3, 11, 1, 3, 1, 1, 1, 1, 1, 4, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:   .
   2:   .
   3:   .
   4:   1
   5:   .
   6:   2
   7:   .
   8:  1 1
   9:   1
  10:   3
  11:   .
  12:  1 2
  13:   .
  14:   4
  15:   2
  16: 1 1 1
For example, the prime indices of 315 are (2,2,3,4), so row 315 is (2,3,4) - 2 + 1 = (1,2,3).
		

Crossrefs

Row lengths are A001222(n) - 1.
Indices of empty rows are A008578.
Even bisection is A112798.
Heinz numbers of rows are A246277.
An opposite version is A358172, Heinz numbers A358195.
Row sums are A359358(n) + A001222(n) - 1.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,{},1-First[primeMS[n]]+Rest[primeMS[n]]],{n,100}]

A359362 a(n) = (A001222(n) + 1) * A056239(n), where A001222 counts prime indices and A056239 adds them up.

Original entry on oeis.org

0, 2, 4, 6, 6, 9, 8, 12, 12, 12, 10, 16, 12, 15, 15, 20, 14, 20, 16, 20, 18, 18, 18, 25, 18, 21, 24, 24, 20, 24, 22, 30, 21, 24, 21, 30, 24, 27, 24, 30, 26, 28, 28, 28, 28, 30, 30, 36, 24, 28, 27, 32, 32, 35, 24, 35, 30, 33, 34, 35, 36, 36, 32, 42, 27, 32, 38
Offset: 1

Views

Author

Gus Wiseman, Dec 31 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[(PrimeOmega[n]+1)*Total[primeMS[n]],{n,30}]
  • Python
    from sympy import primepi, factorint
    def A359362(n): return (sum((f:=factorint(n)).values())+1)*sum(primepi(p)*e for p, e in f.items()) # Chai Wah Wu, Jan 01 2023

Formula

a(n) = (k + 1) * m, where m and k are the sum and length of the integer partition with Heinz number n.
a(n) = 2*A304818(n) - A261079(n).

A362047 Numbers whose prime indices satisfy: (maximum) - (minimum) = (mean).

Original entry on oeis.org

10, 30, 39, 90, 98, 99, 100, 115, 259, 270, 273, 300, 490, 495, 517, 663, 665, 793, 810, 900, 1000, 1083, 1241, 1421, 1495, 1521, 1691, 1911, 2058, 2079, 2125, 2145, 2369, 2430, 2450, 2475, 2662, 2700, 2755, 2821, 3000, 3277, 4247, 4495, 4921, 5587, 5863, 6069
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      10: {1,3}
      30: {1,2,3}
      39: {2,6}
      90: {1,2,2,3}
      98: {1,4,4}
      99: {2,2,5}
     100: {1,1,3,3}
     115: {3,9}
     259: {4,12}
     270: {1,2,2,2,3}
     273: {2,4,6}
     300: {1,1,2,3,3}
The prime indices of 490 are {1,3,4,4}, with minimum 1, maximum 4, and mean 3, and 4-1 = 3, so 490 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A361862.
For minimum instead of mean we have A361908, counted by A118096.
A055396 gives minimum prime index, A061395 maximum.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A326844 gives the diagram complement size of Heinz partition.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]-Min@@prix[#]==Mean[prix[#]]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A362047_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(primepi(max(f:=factorint(n)))-primepi(min(f)))*sum(f.values())==sum(primepi(i)*j for i, j in f.items()),count(max(startvalue,2)))
    A362047_list = list(islice(A362047_gen(),20)) # Chai Wah Wu, Apr 13 2023

Formula

A359360(a(n)) = A326844(a(n)).
A243055(a(n)) = A061395(a(n)) - A055396(a(n))
= A326567(a(n))/A326568(a(n))
= A056239(a(n))/A001222(a(n)).
Showing 1-5 of 5 results.