cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268284 Period 15: repeat {18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18}.

Original entry on oeis.org

18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18, 18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18, 18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18, 18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18, 18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2016

Keywords

Comments

Number of living cells periodic figure (oscillators: pentadecathlon (period 15)) in the Conway's Game of Life (rule B3/S23: see Graphical example in Links section).

Examples

			Start pattern (see Graphical example in Links section):
|. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|
|. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|
|. . . . o . . . . . . o . . . .| . . . o o . . . . . . o o . . .|
|. . . o o . . . . . . o o . . .| . . o . . o . . . . o . . o . .|
|. . o o o . . . . . . o o o . .| . . o . . o . . . . o . . o . .|
|. . . o o . . . . . . o o . . .| . . o . . o . . . . o . . o . .|
|. . . . o . . . . . . o . . . .| . . . o o . . . . . . o o . . .|
|. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|
|. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|
|(generation 0)                 |(generation 1), etc.            |
		

Crossrefs

Programs

  • Magma
    &cat[[18,20,28,20,20,22,18,22,20,16,12,22,18,40,18]^^7]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18}, 80]
  • PARI
    a(n)=2*[9, 10, 14, 10, 10, 11, 9, 11, 10, 8, 6, 11, 9, 20, 9][n%15+1] \\ Charles R Greathouse IV, Jul 17 2016

Formula

For k>=0:
a((30*k - 2*sin((Pi*k)/2) - 18*cos((Pi*k)/2) - cos(Pi*k) + 19)/8) = 18;
a((30*k + 10*sin((Pi*k)/2) + 18*cos((Pi*k)/2) + 3*cos(Pi*k) - 13)/8) = 20;
a(15*k + 2) = 28;
a(15*k + 9) = 16;
a(15*k + 10) = 12;
a(15*k + 13) = 40.