A268350 Primes p where q = p + 4 is also prime and rad((p+1)(p+2)(p+3)) < pq, where rad(k) is the largest squarefree number dividing k.
7, 13, 79, 97, 223, 349, 673, 1087, 1213, 1663, 3697, 13309, 13687, 16927, 20479, 21139, 25999, 32797, 33613, 78649, 122449, 151549, 263167, 401407, 651247, 1058749, 1656247, 1893373, 2060449, 2146687, 3058873, 3276799, 3733207, 3866623, 3880897, 4070197
Offset: 1
Keywords
Examples
79 and 83 are prime, and rad(80*81*82) = rad(2^5*3^4*5*41) = 2*3*5*41 = 1230 < 6557 = 79*83, so 79 is a member of this sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..299
Programs
-
Maple
rad:= n -> convert(numtheory:-factorset(n),`*`): select(p -> isprime(p) and isprime(p+4) and rad((p+1)*(p+2)*(p+3)) < p*(p+4), [seq(i,i=7..10^7,6)]); # Robert Israel, Feb 05 2016
-
Mathematica
p4Q[n_]:=PrimeQ[n+4]&&Select[Divisors[Times@@(n+{1,2,3})],SquareFreeQ][[-1]]<(n(n+4)); Select[Prime[Range[300000]],p4Q] (* Harvey P. Dale, Jul 25 2020 *)
-
PARI
rad(n)=factorback(factor(n)[,1]) has(p,q)=if(q-p!=4, return(0)); my(t=rad((p+1)/2)*rad((p+3)/2),pq=p*q); 3*t
Comments