cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268350 Primes p where q = p + 4 is also prime and rad((p+1)(p+2)(p+3)) < pq, where rad(k) is the largest squarefree number dividing k.

Original entry on oeis.org

7, 13, 79, 97, 223, 349, 673, 1087, 1213, 1663, 3697, 13309, 13687, 16927, 20479, 21139, 25999, 32797, 33613, 78649, 122449, 151549, 263167, 401407, 651247, 1058749, 1656247, 1893373, 2060449, 2146687, 3058873, 3276799, 3733207, 3866623, 3880897, 4070197
Offset: 1

Views

Author

Keywords

Comments

Are there any consecutive primes p and q for which rad((p+1)(p+2)...(q-1)) < pq with q - p > 4?

Examples

			79 and 83 are prime, and rad(80*81*82) = rad(2^5*3^4*5*41) = 2*3*5*41 = 1230 < 6557 = 79*83, so 79 is a member of this sequence.
		

Crossrefs

Subsequence of A029710.

Programs

  • Maple
    rad:= n -> convert(numtheory:-factorset(n),`*`):
    select(p -> isprime(p) and isprime(p+4) and rad((p+1)*(p+2)*(p+3)) < p*(p+4), [seq(i,i=7..10^7,6)]); # Robert Israel, Feb 05 2016
  • Mathematica
    p4Q[n_]:=PrimeQ[n+4]&&Select[Divisors[Times@@(n+{1,2,3})],SquareFreeQ][[-1]]<(n(n+4)); Select[Prime[Range[300000]],p4Q] (* Harvey P. Dale, Jul 25 2020 *)
  • PARI
    rad(n)=factorback(factor(n)[,1])
    has(p,q)=if(q-p!=4, return(0)); my(t=rad((p+1)/2)*rad((p+3)/2),pq=p*q); 3*t