A268363 Number of n X 2 arrays containing 2 copies of 0..n-1 with row sums equal.
1, 1, 4, 12, 96, 480, 5760, 40320, 645120, 5806080, 116121600, 1277337600, 30656102400, 398529331200, 11158821273600, 167382319104000, 5356234211328000, 91055981592576000, 3278015337332736000, 62282291409321984000, 2491291656372879360000
Offset: 0
Keywords
Examples
Some solutions for n=5 ..3..1....1..3....4..0....0..4....0..4....4..0....4..0....4..0....2..2....1..3 ..1..3....2..2....3..1....3..1....2..2....3..1....1..3....2..2....0..4....0..4 ..0..4....0..4....0..4....2..2....1..3....1..3....0..4....1..3....3..1....4..0 ..0..4....0..4....2..2....1..3....4..0....0..4....2..2....0..4....4..0....3..1 ..2..2....3..1....1..3....0..4....1..3....2..2....1..3....3..1....3..1....2..2
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..425 (terms n = 1..25 from R. H. Hardin)
Programs
-
Magma
[2^Floor(n/2)*Factorial(n): n in [0..25]]; // G. C. Greubel, Mar 08 2022
-
Mathematica
Table[2^Floor[n/2] n!, {n,0,25}] (* Michael De Vlieger, Aug 11 2016 *)
-
Sage
[2^(n//2)*factorial(n) for n in (0..25)] # G. C. Greubel, Mar 08 2022
Formula
a(n) = 2^floor(n/2) * n!. - Joel B. Lewis, Aug 11 2016
a(2n) = A065140(n) for terms > a(1) - Terry D. Grant, May 28 2017
a(n) = A158867(n, n) for n > 0. - G. C. Greubel, Mar 08 2022
Extensions
Title clarified by Joel B. Lewis, Aug 11 2016
a(0)=1 prepended by Alois P. Heinz, May 27 2017
Comments