A268375 Numbers k for which A001222(k) = A267116(k).
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 121, 124, 125, 127, 128, 131, 137, 139, 144, 147, 148, 149, 151, 153
Offset: 1
Examples
12 = 2^2 * 3^1 is included in the sequence as the exponents 2 ("10" in binary) and 1 ("01" in binary) have no 1-bits in the same position, and 18 = 2^1 * 3^2 is included for the same reason. On the other hand, 24 = 2^3 * 3^1 is NOT included in the sequence as the exponents 3 ("11" in binary) and 1 ("01" in binary) have 1-bit in the same position 0. 720 = 2^4 * 3^2 * 5^1 is included as the exponents 1, 2 and 4 ("001", "010" and "100" in binary) have no 1-bits in shared positions. Likewise, 10! = 3628800 = 2^8 * 3^4 * 5^2 * 7^1 is included as the exponents 1, 2, 4 and 8 ("0001", "0010", "0100" and "1000" in binary) have no 1-bits in shared positions. And similarly for any term of A191555.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
{1}~Join~Select[Range@ 160, PrimeOmega@ # == BitOr @@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, Feb 04 2016 *)
Comments