cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268375 Numbers k for which A001222(k) = A267116(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 121, 124, 125, 127, 128, 131, 137, 139, 144, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Comments

Numbers k whose prime factorization k = p_1^e_1 * ... * p_m^e_m contains no pair of exponents e_i and e_j (i and j distinct) whose base-2 representations have at least one shared digit-position in which both exponents have a 1-bit.
Equivalently, numbers k such that the factors in the (unique) factorization of k into powers of squarefree numbers with distinct exponents that are powers of two, are prime powers. For example, this factorization of 90 is 10^1 * 3^2, so 90 is not included, as 10 is not prime; whereas this factorization of 320 is 5^1 * 2^2 * 2^4, so 320 is included as 5 and 2 are both prime. - Peter Munn, Jan 16 2020
A225546 maps the set of terms 1:1 onto A138302. - Peter Munn, Jan 26 2020
Equivalently, numbers k for which A064547(k) = A331591(k). - Amiram Eldar, Dec 23 2023

Examples

			12 = 2^2 * 3^1 is included in the sequence as the exponents 2 ("10" in binary) and 1 ("01" in binary) have no 1-bits in the same position, and 18 = 2^1 * 3^2 is included for the same reason.
On the other hand, 24 = 2^3 * 3^1 is NOT included in the sequence as the exponents 3 ("11" in binary) and 1 ("01" in binary) have 1-bit in the same position 0.
720 = 2^4 * 3^2 * 5^1 is included as the exponents 1, 2 and 4 ("001", "010" and "100" in binary) have no 1-bits in shared positions.
Likewise, 10! = 3628800 = 2^8 * 3^4 * 5^2 * 7^1 is included as the exponents 1, 2, 4 and 8 ("0001", "0010", "0100" and "1000" in binary) have no 1-bits in shared positions. And similarly for any term of A191555.
		

Crossrefs

Indices of zeros in A268374, also in A289618.
Cf. A091862 (characteristic function), A268376 (complement).
Cf. A000961, A054753, A191555 (subsequences).
Related to A138302 via A225546.
Cf. also A318363 (a permutation).

Programs

  • Mathematica
    {1}~Join~Select[Range@ 160, PrimeOmega@ # == BitOr @@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, Feb 04 2016 *)