A268379 Numbers having more prime factors of the form 4*k+1 than of the form 4*k+3, when counted with multiplicity.
5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 50, 52, 53, 58, 61, 65, 68, 73, 74, 75, 80, 82, 85, 89, 97, 100, 101, 104, 106, 109, 113, 116, 122, 125, 130, 136, 137, 145, 146, 148, 149, 150, 157, 160, 164, 169, 170, 173, 175, 178, 181, 185, 193, 194, 195, 197, 200, 202, 205, 208, 212, 218, 221
Offset: 1
Keywords
Examples
75 = 3*5*5 is included as there are more prime factors of the form 4k+1 (here two 5's) than of the form 4k+3 (here just one 3).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Rest@ Position[Array[Map[Length, {Select[#, Mod[#, 4] == 1 &], Select[#, Mod[#, 4] == 3 &]}] &@ Flatten@ Apply[Table[#1, {#2}] &, FactorInteger@ #, 1] &, {221}], {a_, b_} /; a > b] // Flatten (* Michael De Vlieger, Feb 05 2016 *)
-
PARI
isok(n) = {my(f = factor(n), nb1 = 0, nb3 = 0); for (i=1, #f~, m = f[i,1] % 4; if (m == 1, nb1 += f[i,2], if (m == 3, nb3 += f[i,2]));); return (nb1 > nb3);} \\ Michel Marcus, Feb 04 2016
-
Python
from itertools import count, islice from sympy import factorint def A268379_gen(): # generator of terms return filter(lambda n:sum((f:=factorint(n)).values())-f.get(2,0) < 2*sum(f[p] for p in f if p & 3 == 1),count(1)) A268379_list = list(islice(A268379_gen(),30)) # Chai Wah Wu, Jun 28 2022
Comments