A268387 Bitwise-XOR of the exponents of primes in the prime factorization of n.
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 2, 2, 0, 3, 3, 1, 1, 1, 5, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 2, 0, 2, 0, 0, 1, 2, 1, 0, 3, 6, 0, 1, 1, 3, 0, 1, 1, 1, 1, 0, 3, 3, 0, 1, 1, 5, 4, 0, 1, 2, 0, 0, 0, 2, 1, 2, 0, 3, 0, 0, 0, 4, 1, 3, 3, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 0, 5, 1, 1, 0, 3, 3, 0, 0, 3
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Table[BitXor @@ Map[Last, FactorInteger@ n], {n, 120}] (* Michael De Vlieger, Feb 12 2016 *)
-
PARI
a(n) = {my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitxor(b, f[k,2]);); b;} \\ Michel Marcus, Feb 06 2016
-
Python
from functools import reduce from operator import xor from sympy import factorint def A268387(n): return reduce(xor,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022
Formula
a(1) = 0; for n > 1: a(n) = A067029(n) XOR a(A028234(n)). [Here XOR stands for bitwise exclusive-or, A003987.]
Other identities and observations. For all n >= 1:
From Peter Munn, Dec 02 2019 with XOR used as above: (Start)
Defined by: a(p^k) = k, for prime p; a(A059897(n,k)) = a(n) XOR a(k).
(End)
Comments