cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268387 Bitwise-XOR of the exponents of primes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 2, 2, 0, 3, 3, 1, 1, 1, 5, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 2, 0, 2, 0, 0, 1, 2, 1, 0, 3, 6, 0, 1, 1, 3, 0, 1, 1, 1, 1, 0, 3, 3, 0, 1, 1, 5, 4, 0, 1, 2, 0, 0, 0, 2, 1, 2, 0, 3, 0, 0, 0, 4, 1, 3, 3, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 0, 5, 1, 1, 0, 3, 3, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2016

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 11, 139, 1427, 14207, 141970, 1418563, 14183505, 141834204, 1418330298, 14183245181, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.4183... . - Amiram Eldar, Sep 10 2022

Crossrefs

A003987, A028234, A059897 and A067029 are used to express relationships between sequence terms.
Cf. A268390 (indices of zeros).
Sequences with similar definitions: A267115, A267116.
Differs from A136566 for the first time at n=24, where a(24) = 2, while A136566(24) = 4.

Programs

  • Mathematica
    Table[BitXor @@ Map[Last, FactorInteger@ n], {n, 120}] (* Michael De Vlieger, Feb 12 2016 *)
  • PARI
    a(n) = {my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitxor(b, f[k,2]);); b;} \\ Michel Marcus, Feb 06 2016
    
  • Python
    from functools import reduce
    from operator import xor
    from sympy import factorint
    def A268387(n): return reduce(xor,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022

Formula

a(1) = 0; for n > 1: a(n) = A067029(n) XOR a(A028234(n)). [Here XOR stands for bitwise exclusive-or, A003987.]
Other identities and observations. For all n >= 1:
a(n) <= A267116(n) <= A001222(n).
From Peter Munn, Dec 02 2019 with XOR used as above: (Start)
Defined by: a(p^k) = k, for prime p; a(A059897(n,k)) = a(n) XOR a(k).
a(A052330(n XOR k)) = a(A052330(n)) XOR a(A052330(k)).
a(A019565(n XOR k)) = a(A019565(n)) XOR a(A019565(k)).
(End)