A268398 Partial sums of A085731.
1, 2, 3, 7, 8, 9, 10, 14, 17, 18, 19, 23, 24, 25, 26, 42, 43, 46, 47, 51, 52, 53, 54, 58, 63, 64, 91, 95, 96, 97, 98, 114, 115, 116, 117, 129, 130, 131, 132, 136, 137, 138, 139, 143, 146, 147, 148, 164, 171, 176, 177, 181, 182, 209, 210, 214, 215, 216, 217
Offset: 1
Keywords
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Project Euler, Problem 484: Arithmetic Derivative
Programs
-
Mathematica
Accumulate@ Table[GCD[n, If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]], {n, 58}] (* Michael De Vlieger, Feb 14 2016, after Michael Somos at A003415 *) Accumulate@ Table[GCD[n, If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]], {n, 58}] (* Michael De Vlieger, Feb 14 2016 *)
-
PARI
a085731(n) = {my(f = factor(n)); for (i=1, #f~, if (f[i,2] % f[i,1], f[i,2]--);); factorback(f);} a(n) = sum(k=1, n, a085731(k)); \\ Michel Marcus, Feb 14 2016
-
Ruby
require 'prime' def a003415(n) return 0 if n == 1 return 1 if Prime.prime?(n) a = Prime.each.find { |i| n % i == 0 } a * a003415(n/a) + n/a * a003415(a) end def a268398(n) sum = 0 (1..n).map { |n| sum += a003415(n).gcd(n) }.last end