cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268414 a(n) = 5*a(n-1) - 2*n for n > 0, a(0) = 1.

Original entry on oeis.org

1, 3, 11, 49, 237, 1175, 5863, 29301, 146489, 732427, 3662115, 18310553, 91552741, 457763679, 2288818367, 11444091805, 57220458993, 286102294931, 1430511474619, 7152557373057, 35762786865245, 178813934326183, 894069671630871, 4470348358154309, 22351741790771497, 111758708953857435
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = k*b(n - 1) - m*n, with n > 0 and b(0)=1, is (1 - (m + 2)*x + x^2)/((1 - x)^2*(1 - k*x)). This recurrence gives the closed form b(n) = ((k^2 - k*(m + 2) + 1)*k^n + m*((k - 1)*n + k))/(k - 1)^2.

Crossrefs

Programs

  • Magma
    [(4*n + 3*5^n + 5)/8: n in [0..30]]; // Vincenzo Librandi, Feb 06 2016
  • Mathematica
    Table[(4 n + 3 5^n + 5)/8, {n, 0, 23}]
    LinearRecurrence[{7, -11, 5}, {1, 3, 11}, 24]
  • PARI
    Vec((1-4*x+x^2)/((1-x)^2*(1-5*x)) + O(x^100)) \\ Altug Alkan, Feb 04 2016
    

Formula

G.f.: (1 - 4*x + x^2)/((1 - x)^2*(1 - 5*x)).
a(n) = (4*n + 3*5^n + 5)/8.
Sum_{n>=0} 1/a(n) = 1.449934283402232875...
Lim_{n -> oo} a(n + 1)/a(n) = 5.
From Elmo R. Oliveira, Sep 10 2024: (Start)
E.g.f.: exp(x)*(3*exp(4*x) + 4*x + 5)/8.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 2. (End)

Extensions

a(24)-a(25) from Elmo R. Oliveira, Sep 10 2024