cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268426 Primes of the form p^2 + 12*q^2, p, q primes.

Original entry on oeis.org

73, 97, 157, 229, 277, 337, 349, 397, 409, 421, 577, 613, 661, 709, 757, 829, 877, 1009, 1069, 1117, 1429, 1549, 1621, 1669, 1741, 1789, 2053, 2269, 2293, 2389, 2437, 2557, 2797, 2857, 2917, 3109, 3301, 3517, 3529, 3637
Offset: 1

Views

Author

Zak Seidov, Feb 04 2016

Keywords

Comments

A variant of the cuban primes.
Green & Sawhney prove that this sequence is infinite. - Charles R Greathouse IV, Oct 08 2024

Examples

			73=5^2+12*2^2, 97= 7^2+12* 2^2, 157= 7^2+12*3^2.
		

Crossrefs

Cf. A002407.

Programs

  • PARI
    list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-25)\12), my(t=12*q^2); forprime(p=5, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ Charles R Greathouse IV, Oct 08 2024