A268429 Number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the right exactly once.
1, 4, 16, 62, 238, 910, 3475, 13270, 50707, 193948, 742659, 2847126, 10928009, 41993692, 161555008, 622201838, 2398811962, 9257512318, 35760612784, 138263710226, 535038428936, 2072130742074, 8031333322206, 31151602276002, 120915026597458, 469648731423190, 1825348333058230, 7098811400187410, 27623655321103718
Offset: 2
Keywords
Links
- John Tyler Rascoe, Table of n, a(n) for n = 2..100
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Programs
-
Mathematica
(1 - 4x + x^2 - 2x^3 - Sqrt[1-4x](1 - 2x - 3x^2))/(2(-1 + x(4+x))^2) + O[x]^31 // CoefficientList[#, x]& // Drop[#, 2]& (* Jean-François Alcover, Dec 15 2018 *)
-
PARI
A_x(N) = {my(x='x+O('x^N), f=sqrt(1-4*x)); Vec((-1+f+2*x)^2/(1-f+(-5+f)*x)^2)} A_x(31) \\ John Tyler Rascoe, Aug 26 2024
Formula
G.f.: (-1 + f(x) + 2*x)^2/(1 - f(x) + (-5 + f(x))*x)^2, where f(x) = sqrt(1 - 4*x).
Comments