cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268441 Triangle read by rows, the coefficients of the Bell polynomials.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 3, 4, 6, 1, 0, 1, 10, 5, 15, 10, 10, 1, 0, 1, 10, 15, 6, 15, 60, 15, 45, 20, 15, 1, 0, 1, 35, 21, 7, 105, 70, 105, 21, 105, 210, 35, 105, 35, 21, 1, 0, 1, 35, 56, 28, 8, 280, 210, 280, 168, 28, 105, 840, 280, 420, 56, 420, 560, 70, 210, 56, 28, 1
Offset: 0

Views

Author

Peter Luschny, Feb 07 2016

Keywords

Comments

The triangle of coefficients of the inverse Bell polynomials is A268442.

Examples

			[[1]]
[[0], [1]]
[[0], [1],  [1]]
[[0], [1],  [3],         [1]]
[[0], [1],  [3, 4],      [6],          [1]]
[[0], [1],  [10, 5],     [15, 10],     [10],     [1]]
[[0], [1],  [10, 15, 6], [15, 60, 15], [45, 20], [15], [1]]
Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of second kind (A048993).
		

References

  • L. Comtet, Advanced combinatorics, The art of finite and infinite expansions, 1974.

Crossrefs

Programs

  • Mathematica
    BellCoeffs[n_, k_] :=  Module[{v, r},
    v = Table[Subscript[x,j], {j,1,n}]; (* list of variables *)
    r = Table[Subscript[x,j]->1, {j,1,n}]; (* evaluated at 1 *)
    MonomialList[BellY[n,k,v], v, NegativeLexicographic] /. r];
    A268441Row[n_] := Table[BellCoeffs[n,k], {k,0,n}] // Flatten;
    Do[Print[A268441Row[n]], {n,0,8}] (* Peter Luschny, Feb 08 2016 *)
    max = 9; egf = Exp[Sum[x[k]*t^k/k!, {k, 1, max}]]; P = Table[n!* SeriesCoefficient[egf, {t, 0, n}], {n, 0, max-1}]; row[n_] := (s = Split[ Sort[{ Exponent[# /. x[] -> x, x], #}& /@ (List @@ Expand[P[[n]]])], #1[[1]] == #2[[1]]&]; Join[{0}, #[[All, 2]]& /@ (s /. x[] -> 1) // Flatten]); row[1] = {1}; Array[row, max] // Flatten (* Jean-François Alcover, Feb 08 2016 *)
  • Sage
    import itertools
    def A268441_row(n):
        c = [bell_polynomial(n,k).coefficients() for k in (0..n)]
        if n>0: c[0] = [0]
        return list(itertools.chain(*c))
    for n in range(9): print(A268441_row(n))

Formula

E.g.f.: exp( Sum_{k>=1} x_{k}*t^k/k! ), monomials in negative lexicographic order.