A268558 Number of not necessarily connected sensed combinatorial maps with n edges.
1, 2, 8, 34, 182, 1300, 12634, 153598, 2231004, 37250236, 699699968, 14574247086, 333121322514, 8286605836248, 222824153996898, 6439779836400464, 199051769194393718, 6552226226766384216, 228826838199807593530, 8450335361750379998822, 329002470731473098130572
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..400 (terms 0..30 from Alois P. Heinz)
- R. de Mello Koch, S. Ramgoolam, Strings from Feynman graph counting: Without large N, Phys. Rev. D 85 (2012) 026007. Different from a(7) onwards.
- R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016),
Crossrefs
Euler transform of A170946.
Programs
-
PARI
b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))} S(n,k)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)), O(x*x^n))} seq(n)={Vec(prod(k=1, 2*n, S(n,k)))} \\ Andrew Howroyd, Jan 28 2025
Extensions
a(11)-a(18) from Euler transform of A170946 - R. J. Mathar, Apr 07 2022
a(0)=1 prepended and a(19)-a(20) (via A170946) from Alois P. Heinz, Jan 27 2025
Name edited by Andrew Howroyd, Jan 31 2025
Comments