cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268579 Expansion of (1 + 6*x + x^2 + 12*x^3 - 2*x^4)/((1 - x)^4*(1 + x)^3).

Original entry on oeis.org

1, 7, 11, 41, 48, 120, 130, 262, 275, 485, 501, 807, 826, 1246, 1268, 1820, 1845, 2547, 2575, 3445, 3476, 4532, 4566, 5826, 5863, 7345, 7385, 9107, 9150, 11130, 11176, 13432, 13481, 16031, 16083, 18945, 19000, 22192, 22250, 25790, 25851, 29757, 29821
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Examples

			a(0) = 1;
a(1) = 1 + 2*3 = 7;
a(2) = 1 + 2*3 + 4 = 11;
a(3) = 1 + 2*3 + 4 + 5*6 = 41;
a(4) = 1 + 2*3 + 4 + 5*6 + 7 = 48;
a(5) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 = 120;
a(6) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 = 130;
a(7) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12= 262;
a(8) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 + 13 = 275;
a(9) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 + 13 + 14*15 = 485, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(6 k + (-1)^k + 3) ((3 k - (-1)^k (3 k + 1) + 5)/16), {k, 0, n}], {n, 0, 42}]
    Table[1 + (n (6 n^2 + 27 n + 35) - (9 n^2 + 15 n + 2) (-1)^n + 2)/16, {n, 0, 42}]
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 7, 11, 41, 48, 120, 130}, 43]
  • PARI
    Vec((1 + 6*x + x^2 + 12*x^3 - 2*x^4)/((1 - x)^4*(1 + x)^3) + O(x^50)) \\ Michel Marcus, Feb 21 2016

Formula

G.f.: (1 + 6*x + x^2 + 12*x^3 - 2*x^4)/((1 - x)^4*(1 + x)^3).
a(n) = Sum_{k = 0..n} (6*k + (-1)^k +3)*(3*k - (-1)^k*(3*k + 1) + 5)/16.
a(n) = 1 + (n*(6*n^2 + 27*n + 35) - (9*n^2 + 15*n + 2)*(-1)^n + 2)/16.