cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268640 Primes of the form 2^i * 3^j - 1 for positive i, j.

Original entry on oeis.org

5, 11, 17, 23, 47, 53, 71, 107, 191, 383, 431, 647, 863, 971, 1151, 2591, 4373, 6143, 6911, 8747, 13121, 15551, 23327, 27647, 62207, 73727, 139967, 165887, 294911, 314927, 442367, 472391, 497663, 786431, 995327, 1062881, 2519423, 10616831, 17915903, 18874367
Offset: 1

Views

Author

Muniru A Asiru, Oct 15 2017

Keywords

Comments

a(n) is congruent to 5 (mod 6).

Examples

			a(1) = 5 = 2^1 * 3^1 - 1.
a(2) = 11 = 2^2 * 3^1 - 1.
a(3) = 17 = 2^1 * 3^2 - 1.
a(4) = 23 = 2^3 * 3^1 - 1.
a(5) = 47 = 2^4 * 3^1 - 1.
List of (i, j): (1, 1), (2, 1), (1, 2), (3, 1), (4, 1), (1, 3), (3, 2), (2, 3), (6, 1), (7, 1), (4, 3), (3, 4), (5, 3), (2, 5), (7, 2), (5, 4), ...
		

Crossrefs

Programs

  • GAP
    K:=10^7+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    A268640:=List(Positions(List(A,i->Elements(Factors(i+1))),[2,3]),i->A[i]);
  • Maple
    N:= 10^10: # to get all terms <= N
    R:= {}:
    for b from 1 to floor(log[3]((N+1)/2)) do
         R:= R union select(isprime, {seq(2^a*3^b-1,
              a=1..ilog2((N+1)/3^b))})
    od:
    sort(convert(R,list)); # Robert Israel, Oct 15 2017

Formula

{ A005105 } \ { 2 } \ { A000668 }.