A268640 Primes of the form 2^i * 3^j - 1 for positive i, j.
5, 11, 17, 23, 47, 53, 71, 107, 191, 383, 431, 647, 863, 971, 1151, 2591, 4373, 6143, 6911, 8747, 13121, 15551, 23327, 27647, 62207, 73727, 139967, 165887, 294911, 314927, 442367, 472391, 497663, 786431, 995327, 1062881, 2519423, 10616831, 17915903, 18874367
Offset: 1
Keywords
Examples
a(1) = 5 = 2^1 * 3^1 - 1. a(2) = 11 = 2^2 * 3^1 - 1. a(3) = 17 = 2^1 * 3^2 - 1. a(4) = 23 = 2^3 * 3^1 - 1. a(5) = 47 = 2^4 * 3^1 - 1. List of (i, j): (1, 1), (2, 1), (1, 2), (3, 1), (4, 1), (1, 3), (3, 2), (2, 3), (6, 1), (7, 1), (4, 3), (3, 4), (5, 3), (2, 5), (7, 2), (5, 4), ...
Links
- Ray Chandler, Table of n, a(n) for n = 1..7151 (terms < 10^1000)
Programs
-
GAP
K:=10^7+1;; # to get all terms <= K. A:=Filtered([1..K],IsPrime);; A268640:=List(Positions(List(A,i->Elements(Factors(i+1))),[2,3]),i->A[i]);
-
Maple
N:= 10^10: # to get all terms <= N R:= {}: for b from 1 to floor(log[3]((N+1)/2)) do R:= R union select(isprime, {seq(2^a*3^b-1, a=1..ilog2((N+1)/3^b))}) od: sort(convert(R,list)); # Robert Israel, Oct 15 2017
Comments