A379445 a(n) = gpf(prime(n)-1)*gpf(prime(n)+1), where gpf is A006530.
4, 6, 6, 15, 21, 6, 15, 33, 35, 10, 57, 35, 77, 69, 39, 145, 155, 187, 21, 111, 65, 287, 55, 21, 85, 221, 159, 33, 133, 14, 143, 391, 161, 185, 95, 1027, 123, 581, 1247, 445, 65, 57, 291, 77, 55, 371, 259, 2147, 437, 377, 85, 55, 35, 86, 1441, 335, 85, 3197, 329, 3337
Offset: 2
Keywords
Examples
a(43390) = 146 because 2^19-1 = A000668(5) is the 43390th prime and the greatest prime factor of 2^19-2 is 73.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 2..10000
- Hugo Pfoertner, 1 million terms of A379445, 7z compressed file (5 MB) (2025).
Crossrefs
Programs
-
Mathematica
Table[Times @@ Map[FactorInteger[#][[-1, 1]] &, Prime[n] + {-1, 1}], {n, 2, 61}] (* Michael De Vlieger, Jan 20 2025 *)
-
PARI
a379445(n) = my (p=prime(n), fm=factor(p-1), fp=factor(p+1)); fm[#fm~,1]*fp[#fp~,1]
Comments