cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268650 G.f. A(x) satisfies: 1 = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n*x) * (1 - A(x)^(n-1)/x).

Original entry on oeis.org

1, 1, 3, 12, 50, 228, 1093, 5439, 27816, 145310, 772109, 4159998, 22674120, 124800022, 692686326, 3872659052, 21788990982, 123280580325, 700988359296, 4003661444545, 22958337467658, 132127737109116, 762912391705495, 4418326909800903, 25658693934333564, 149385658937180542, 871758439355580702, 5098248338356022913, 29875567243598952092, 175396705518901173813, 1031531740231929729207
Offset: 1

Views

Author

Paul D. Hanna, Mar 02 2016

Keywords

Comments

The g.f. utilizes the Jacobi Triple Product: Product_{n>=1} (1-x^n)*(1 - x^n/a)*(1 - x^(n-1)*a) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * a^n.

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 50*x^5 + 228*x^6 + 1093*x^7 + 5439*x^8 + 27816*x^9 + 145310*x^10 + 772109*x^11 + 4159998*x^12 + 22674120*x^13 + 124800022*x^14 + 692686326*x^15 + 3872659052*x^16 +...
where A(x) satisfies the Jacobi Triple Product:
1 = (1-A(x))*(1-A(x)*x)*(1-1/x) * (1-A(x)^2)*(1-A(x)^2*x)*(1-A(x)/x) * (1-A(x)^3)*(1-A(x)^3*x)*(1-A(x)^2/x) * (1-A(x)^4)*(1-A(x)^4*x)*(1-A(x)^3/x) * (1-A(x)^5)*(1-A(x)^5*x)*(1-A(x)^4/x) * (1-A(x)^6)*(1-A(x)^6*x)*(1-A(x)^5/x) *...
also
-x = (1-A(x))*(1-A(x)/x)*(1-x) * (1-A(x)^2)*(1-A(x)^2/x)*(1-A(x)*x) * (1-A(x)^3)*(1-A(x)^3/x)*(1-A(x)^2*x) * (1-A(x)^4)*(1-A(x)^4/x)*(1-A(x)^3*x) * (1-A(x)^5)*(1-A(x)^5/x)*(1-A(x)^4*x) * (1-A(x)^6)*(1-A(x)^6/x)*(1-A(x)^5*x) +...
further,
-x = (1-x) - A(x)*(1-x^3)/x + A(x)^3*(1-x^5)/x^2 - A(x)^6*(1-x^7)/x^3 + A(x)^10*(1-x^9)/x^4 - A(x)^15*(1-x^11)/x^5 + A(x)^21*(1-x^13)/x^6 +...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[1/r, s] * QPochhammer[r, s] * QPochhammer[s, s] == 1 - r, (Log[1-s] + QPolyGamma[0, 1, s]) / (s*Log[s]) - Derivative[0, 1][QPochhammer][1/r, s]/QPochhammer[1/r, s] - Derivative[0, 1][QPochhammer][r, s]/QPochhammer[r, s] - Derivative[0, 1][QPochhammer][s, s]/ QPochhammer[s, s] == 0}, {r, 1/6}, {s, 1/4}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
  • PARI
    {a(n) = my(A=[1,1]); for(i=1,n, A=concat(A,0); A[#A]=-Vec( sum(m=1,sqrtint(2*#A)+2,(-1)^m*(x*Ser(A))^(m*(m-1)/2)*(1-x^(2*m-1))/x^m) )[#A-1] );A[n]}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n=-oo..+oo} A(x)^(n*(n-1)/2) * (-1/x)^n.
(2) -x = Sum_{n>=0} A(x)^(n*(n+1)/2) * (1 - x^(2*n+1)) / (-x)^n.
(3) -x = Sum_{n=-oo..+oo} A(x)^(n*(n-1)/2) * (-x)^n.
(4) -x = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n/x) * (1 - A(x)^(n-1)*x).
(5) -x/(1-x) = Product_{n>=1} (1 - A(x)^n) * (1 - (x+1/x)*A(x)^n + A(x)^(2*n)).
a(n) ~ c * d^n / n^(3/2), where d = 6.1842071022304098678015128954668969... and c = 0.0509064807103441056564968325417718... . - Vaclav Kotesovec, Mar 05 2016