A354650
G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
Original entry on oeis.org
1, 1, 0, 3, 3, 1, 0, 9, 27, 30, 15, 3, 0, 22, 147, 340, 390, 246, 83, 12, 0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55, 0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273, 0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428, 0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752
Offset: 0
G.f.: A(x,y) = (1 + y) + x*(3*y + 3*y^2 + y^3) + x^2*(9*y + 27*y^2 + 30*y^3 + 15*y^4 + 3*y^5) + x^3*(22*y + 147*y^2 + 340*y^3 + 390*y^4 + 246*y^5 + 83*y^6 + 12*y^7) + x^4*(51*y + 630*y^2 + 2530*y^3 + 5070*y^4 + 5928*y^5 + 4284*y^6 + 1908*y^7 + 486*y^8 + 55*y^9) + x^5*(108*y + 2295*y^2 + 14595*y^3 + 45450*y^4 + 83559*y^5 + 98910*y^6 + 78282*y^7 + 41580*y^8 + 14355*y^9 + 2937*y^10 + 273*y^11) + ...
such that A = A(x,y) satisfies:
(1) -y = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -y = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
(3) -y = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(4) -y = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
1, 1;
0, 3, 3, 1;
0, 9, 27, 30, 15, 3;
0, 22, 147, 340, 390, 246, 83, 12;
0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55;
0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273;
0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428;
0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752;
0, 810, 62100, 1157820, 9729720, 46977378, 147584556, 324283068, 520974180, 628884300, 579226362, 409367712, 221218179, 90115620, 26879160, 5559408, 715122, 43263; ...
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
-
{T(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))
A354649
G.f. A(x,y) satisfies: y = f(x,A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
Original entry on oeis.org
-1, 1, 0, -3, 3, -1, 0, 9, -27, 30, -15, 3, 0, -22, 147, -340, 390, -246, 83, -12, 0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55, 0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273, 0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428, 0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752
Offset: 0
G.f.: A(x,y) = (-1 + y) - x*(3*y - 3*y^2 + y^3) + x^2*(9*y - 27*y^2 + 30*y^3 - 15*y^4 + 3*y^5) - x^3*(22*y - 147*y^2 + 340*y^3 - 390*y^4 + 246*y^5 - 83*y^6 + 12*y^7) + x^4*(51*y - 630*y^2 + 2530*y^3 - 5070*y^4 + 5928*y^5 - 4284*y^6 + 1908*y^7 - 486*y^8 + 55*y^9) - x^5*(108*y - 2295*y^2 + 14595*y^3 - 45450*y^4 + 83559*y^5 - 98910*y^6 + 78282*y^7 - 41580*y^8 + 14355*y^9 - 2937*y^10 + 273*y^11) + x^6*(221*y - 7476*y^2 + 70737*y^3 - 319605*y^4 + 849450*y^5 - 1472261*y^6 + 1757688*y^7 - 1484451*y^8 + 891890*y^9 - 375442*y^10 + 105930*y^11 - 18109*y^12 + 1428*y^13) + x^7*(-429*y + 22302*y^2 - 301070*y^3 + 1886010*y^4 - 6878907*y^5 + 16386636*y^6 - 27205308*y^7 + 32683680*y^8 - 28981855*y^9 + 19081854*y^10 - 9258678*y^11 + 3231514*y^12 - 771225*y^13 + 113220*y^14 - 7752*y^15) + x^8*(810*y - 62100*y^2 + 1157820*y^3 - 9729720*y^4 + 46977378*y^5 - 147584556*y^6 + 324283068*y^7 - 520974180*y^8 + 628884300*y^9 - 579226362*y^10 + 409367712*y^11 - 221218179*y^12 + 90115620*y^13 - 26879160*y^14 + 5559408*y^15 - 715122*y^16 + 43263*y^17) + ...
such that A = A(x,y) satisfies:
(1) y = ... + x^36*A^28 + x^28*A^21 + x^21*A^15 + x^15*A^10 + x^10*A^6 + x^6*A^3 + x^3*A + x + 1 + A + x*A^3 + x^3*A^6 + x^6*A^10 + x^10*A^15 + x^15*A^21 + x^21*A^28 + x^28*A^36 + ...
(2) y = (1 - x*A)*(1 + A)*(1+x) * (1 - x^2*A^2)*(1 + x*A^2)*(1 + x^2*A) * (1 - x^3*A^3)*(1 + x^2*A^3)*(1 + x^3*A^2) * (1 - x^4*A^4)*(1 + x^3*A^4)*(1 + x^4*A^3) * (1 - x^5*A^5)*(1 + x^4*A^5)*(1 + x^5*A^4) * ...
(3) y = (1+x) + (1+x^3)*A + x*(1+x^5)*A^3 + x^3*(1+x^7)*A^6 + x^6*(1+x^9)*A^10 + x^10*(1+x^11)*A^15 + x^15*(1+x^13)*A^21 + x^21*(1+x^15)*A^28 + ...
(4) y = (1+A) + (1+A^3)*x + A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 + A^10*(1+A^11)*x^15 + A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
-1, 1;
0, -3, 3, -1;
0, 9, -27, 30, -15, 3;
0, -22, 147, -340, 390, -246, 83, -12;
0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55;
0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273;
0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428;
0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752;
0, 810, -62100, 1157820, -9729720, 46977378, -147584556, 324283068, -520974180, 628884300, -579226362, 409367712, -221218179, 90115620, -26879160, 5559408, -715122, 43263; ...
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
-
{T(n,k) = my(A=[y-1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y - sum(m=0,sqrtint(2*#A+9), x^(m*(m-1)/2) * (1 + x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
H=A; polcoeff(A[n+1],k,y)}
for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))
A268299
G.f. A(x) satisfies: -1 = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n/x) * (1 - A(x)^(n-1)*x).
Original entry on oeis.org
2, 7, 84, 1240, 20942, 382344, 7354688, 146810440, 3012778758, 63167322872, 1347251937632, 29138746861200, 637584335364362, 14088532800477752, 313936020646727040, 7046500093908958288, 159171390375064583380, 3615669944253537267048, 82541551931101193203004, 1892725670848222011475776, 43575217427267416453289838, 1006843304895182755611475824, 23340548167572913996786290328
Offset: 1
G.f.: A(x) = 2*x + 7*x^2 + 84*x^3 + 1240*x^4 + 20942*x^5 + 382344*x^6 + 7354688*x^7 + 146810440*x^8 + 3012778758*x^9 + 63167322872*x^10 +...
where A(x) satisfies the Jacobi Triple Product:
-1 = (1-A(x))*(1-A(x)/x)*(1-x) * (1-A(x)^2)*(1-A(x)^2/x)*(1-A(x)*x) * (1-A(x)^3)*(1-A(x)^3/x)*(1-A(x)^2*x) * (1-A(x)^4)*(1-A(x)^4/x)*(1-A(x)^3*x) * (1-A(x)^5)*(1-A(x)^5/x)*(1-A(x)^4*x) * (1-A(x)^6)*(1-A(x)^6/x)*(1-A(x)^5*x) +...
also
1/x = (1-A(x))*(1-A(x)*x)*(1-1/x) * (1-A(x)^2)*(1-A(x)^2*x)*(1-A(x)/x) * (1-A(x)^3)*(1-A(x)^3*x)*(1-A(x)^2/x) * (1-A(x)^4)*(1-A(x)^4*x)*(1-A(x)^3/x) * (1-A(x)^5)*(1-A(x)^5*x)*(1-A(x)^4/x) * (1-A(x)^6)*(1-A(x)^6*x)*(1-A(x)^5/x) *...
further,
-1 = (1-x) - A(x)*(1-x^3)/x + A(x)^3*(1-x^5)/x^2 - A(x)^6*(1-x^7)/x^3 + A(x)^10*(1-x^9)/x^4 - A(x)^15*(1-x^11)/x^5 + A(x)^21*(1-x^13)/x^6 +...
RELATED SERIES.
The series reversion of g.f. A(x) equals x*Q(x), where Q(x) begins:
Q(x) = 1/2 - 7/2*x/4 - 70/2*x^2/4^2 - 795/2*x^3/4^3 - 13802/2*x^4/4^4 - 277782/2*x^5/4^5 - 6093708/2*x^6/4^6 - 139376659/2*x^7/4^7 - 3297234754/2*x^8/4^8 - 79988099074/2*x^9/4^9 - 1979248977748/2*x^10/4^10 +...+ A268301(n)/2*x^n/4^n +...
and where Q(x) satisfies the Jacobi Triple Product:
-1 = (1-x)*(1-x*Q(x))*(1-1/Q(x)) * (1-x^2)*(1-x^2*Q(x))*(1-x/Q(x)) * (1-x^3)*(1-x^3*Q(x))*(1-x^2/Q(x)) * (1-x^4)*(1-x^4*Q(x))*(1-x^3/Q(x)) * (1-x^5)*(1-x^5*Q(x))*(1-x^4/Q(x)) * (1-x^6)*(1-x^6*Q(x))*(1-x^5/Q(x)) *...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r*QPochhammer[1/r, s]*QPochhammer[r, s]* QPochhammer[s, s] == 1 - r, (Log[1 - s] + QPolyGamma[0, 1, s])/(s*Log[s]) - Derivative[0, 1][QPochhammer][1/r, s]/QPochhammer[1/r, s] - Derivative[0, 1][QPochhammer][r, s]/QPochhammer[r, s] - Derivative[0, 1][QPochhammer][s, s]/ QPochhammer[s, s] == 0}, {r, 1/24}, {s, 1/8}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
-
{a(n) = my(Q=1/2, t=floor(sqrt(2*n+1)+1/2)); for(i=0, n, Q = (Q + sum(m=-t, t, x^(m*(m-1)/2) * (-Q)^m +x*O(x^n)) )/2 ); polcoeff(serreverse(x*Q), n)}
for(n=1, 30, print1(a(n), ", "))
A268651
G.f. A(x) satisfies: 1 = Product_{n>=1} (1 - x^n) * (1 - x^(n+1)/A(x)) * (1 - x^(n-2)*A(x)).
Original entry on oeis.org
1, 1, 2, 5, 9, 22, 52, 146, 377, 1036, 2810, 8014, 22790, 66100, 191541, 562926, 1660975, 4944766, 14767136, 44357952, 133698623, 404810569, 1229434572, 3746595869, 11447723074, 35075829156, 107724187826, 331605018200, 1022842337041, 3161156987190, 9787096605716, 30352665554591, 94279407445012, 293277650593792, 913565090912339, 2849489942324466, 8898714901181309, 27822251614174021, 87083081436755770
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 22*x^5 + 52*x^6 + 146*x^7 + 377*x^8 + 1036*x^9 + 2810*x^10 + 8014*x^11 + 22790*x^12 + 66100*x^13 + 191541*x^14 + 562926*x^15 +...
where A(x) satisfies the Jacobi Triple Product:
1 = (1-x)*(1-x^2/A(x))*(1-1/x*A(x)) * (1-x^2)*(1-x^3/A(x))*(1-1*A(x)) * (1-x^3)*(1-x^4/A(x))*(1-x*A(x)) * (1-x^4)*(1-x^5/A(x))*(1-x^2*A(x)) * (1-x^5)*(1-x^6/A(x))*(1-x^3*A(x)) * (1-x^6)*(1-x^7/A(x))*(1-x^4*A(x)) *...
Also
x = (A(x)-1)*A(x) - x*(A(x)^3-1) + x^3*(A(x)^5-1)/A(x) - x^6*(A(x)^7-1)/A(x)^2 + x^10*(A(x)^9-1)/A(x)^3 - x^15*(A(x)^11-1)/A(x)^4 + x^21*(A(x)^13-1)/A(x)^5 +...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{s*QPochhammer[r, r] * QPochhammer[r/s, r] * QPochhammer[s/r^2, r] == (s - r)*(1 - s/r^2), (r^3 - s^2)* Log[r] + (r^3 - r*s - r^2*s + s^2) * (QPolyGamma[0, Log[r/s]/Log[r], r] - QPolyGamma[0, Log[s/r^2]/Log[r], r]) == 0}, {r, 1/3}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
-
{a(n) = my(A=[1,1]); for(i=1,n, A=concat(A,0); A[#A]=-Vec( sum(m=1,sqrtint(2*#A)+2,(-1)^m*(x*Ser(A))^(m*(m-1)/2)*(1-x^(2*m-1))/x^m) )[#A-1] );Vec(x/serreverse(x*Ser(A)))[n+1]}
for(n=0,40,print1(a(n),", "))
A354647
G.f. A(x) satisfies: -x^2 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 0, 1, 3, 9, 25, 78, 256, 881, 3064, 10831, 38766, 140550, 514625, 1900301, 7067013, 26448613, 99539716, 376489459, 1430330451, 5455742957, 20885223619, 80213926069, 309002022843, 1193616950854, 4622372591972, 17942238661229, 69795082381496, 272046051362013
Offset: 0
G.f.: A(x) = 1 + x^2 + 3*x^3 + 9*x^4 + 25*x^5 + 78*x^6 + 256*x^7 + 881*x^8 + 3064*x^9 + 10831*x^10 + 38766*x^11 + 140550*x^12 + ...
such that A = A(x) satisfies:
(1) -x^2 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -x^2 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -x^2 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -x^2 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^2 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A354648
G.f. A(x) satisfies: -x^3 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 0, 0, 1, 3, 9, 22, 54, 135, 368, 1060, 3135, 9295, 27472, 81309, 242255, 728429, 2208483, 6736523, 20634196, 63410076, 195467757, 604457802, 1875053982, 5833449236, 18195767301, 56888745654, 178238369769, 559538565187, 1759796017533, 5544359742297
Offset: 0
G.f.: A(x) = 1 + x^3 + 3*x^4 + 9*x^5 + 22*x^6 + 54*x^7 + 135*x^8 + 368*x^9 + 1060*x^10 + 3135*x^11 + 9295*x^12 + 27472*x^13 + ...
such that A = A(x) satisfies:
(1) -x^3 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -x^3 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -x^3 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -x^3 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^3 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
Showing 1-6 of 6 results.
Comments