cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268653 E.g.f.: exp( T(T(T(x))) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).

Original entry on oeis.org

1, 1, 7, 82, 1345, 28396, 734149, 22485898, 796769201, 32084546824, 1447917011461, 72411962077126, 3976481464087609, 237939307837951708, 15412492927027232261, 1074675869343994244266, 80270802348342665849569, 6395153963612453962942096, 541390375948749181692141061, 48536543026953818449535683054, 4594206854845500504888845269481, 457878082780635055560866092165156, 47930551834845432770784732668907205
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...
where A(x) = A( x/exp(x) )^A(x).
RELATED SERIES.
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + 8^6*x^7/7! + 9^7*x^8/8! +...+ A000272(n+1)*x^n/n! +...
then
(1) A(x) = W( x*W(x) * W(x*W(x)) ),
(2) A(x) = W( x*W(x) )^A(x),
(3) A(x) = exp( A(x) * x*W(x) * W(x*W(x)) ),
(4) A(x/exp(x)) = W(x*W(x)).
Let G(x) = A(x/exp(x)), which begins:
G(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + 3774513*x^7/7! + 101808185*x^8/8! +...+ A227176(n)*x^n/n! +...
then W(x), G(x), and A(x) are in the family of functions that begin:
(1) W(x) = exp(x)^W(x) = exp(T(x)),
(2) G(x) = W(x)^G(x) = exp(T(T(x))),
(3) A(x) = G(x)^A(x) = exp(T(T(T(x)))), ...
where T(x) = -LambertW(-x) is Euler's tree function:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/! + 7^6*x^7/7! + 8^7*x^8/8! +...+ A000169(n)*x^n/n! +...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: A(x) = exp(T(T(T(x))) ) */
    {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, subst(T, x, T))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = W( x*W(x) * W(x*W(x)) ) */
    {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(W, x, subst(x*W, x, x*W)), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = exp( -A(x)*LambertW(LambertW(-x)) ) */
    {a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
    for(i=1, n, A=exp(-A*subst(LambertW, x, subst(LambertW, x, -x)) +x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = ( LambertW(LambertW(-x))/LambertW(-x) )^A(x) */
    {a(n)=local(A=1+x, W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n));
    for(i=1, n, A=subst(W,x,x*W)^A); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f. satisfies:
(1) A(x) = A(x/exp(x))^A(x).
(2) A(x) = W( x*W(x) * W(x*W(x)) ), where W(x) = LambertW(-x)/(-x).
(3) A(x) = W( x*W(x) )^A(x), where W(x) = LambertW(-x)/(-x).
(4) A(x) = exp( -A(x)*LambertW(LambertW(-x)) ).
(5) A(x) = ( LambertW(LambertW(-x)) / LambertW(-x) )^A(x).
(6) A(x/exp(x)) = exp(T(T(x))) = LambertW(LambertW(-x)) / LambertW(-x).
a(n) ~ exp(1 + (exp(-1) + exp(-1 - exp(-1)))*n) * n^(n-1) / sqrt((1 - exp(-1))*(1-exp(-1 - exp(-1)))). - Vaclav Kotesovec, Apr 01 2016