cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257463 Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k.

Examples

			A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   2,     2,       3,        3,         4, ...
  1, 1,   5,    10,      23,       40,        73, ...
  1, 1,  17,    93,     465,     1746,      5741, ...
  1, 1,  73,  1417,   19834,   190131,   1398547, ...
  1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668.
Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263.
Main diagonal gives A334286.
Cf. A257462, A257493 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
    A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

A333900 Number of nonequivalent n X n binary matrices with 4 ones in every row and column up to permutation of rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 130, 16700, 3330915, 957659906, 382304435016, 204772106834160, 143299238797934175, 128179127293763395905, 143868740984351881041401, 199438057945979365292917046, 336793287548313747690192184440, 684521312346990661869780271166300
Offset: 0

Views

Author

Andrew Howroyd, Apr 18 2020

Keywords

Comments

Number of factorizations of m^4 into n factors, where m is a product of exactly n distinct primes and each factor is a product of 4 distinct primes.

Crossrefs

Column k=4 of A260340.
Cf. A268668.
Showing 1-2 of 2 results.