A268684 a(n) = n*(n + 1)*(4*n - 1)/3.
0, 2, 14, 44, 100, 190, 322, 504, 744, 1050, 1430, 1892, 2444, 3094, 3850, 4720, 5712, 6834, 8094, 9500, 11060, 12782, 14674, 16744, 19000, 21450, 24102, 26964, 30044, 33350, 36890, 40672, 44704, 48994, 53550, 58380, 63492, 68894, 74594, 80600, 86920
Offset: 0
Examples
a(0) = 0; a(1) = 0 + 1*2 = 2; a(2) = 0 + 1*2 + 3*4 = 14; a(3) = 0 + 1*2 + 3*4 + 5*6 = 44; a(4) = 0 + 1*2 + 3*4 + 5*6 + 7*8 = 100; a(5) = 0 + 1*2 + 3*4 + 5*6 + 7*8 + 9*10 = 190, etc.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n + 1)*(4*n - 1)/3: n in [0..40]]; // Vincenzo Librandi, Feb 11 2016
-
Mathematica
Table[n (n + 1) ((4 n - 1)/3), {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 2, 14, 44}, 40] CoefficientList[Series[2 x (3 x + 1) / (x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 11 2016 *)
-
PARI
a(n)=n*(n+1)*(4*n-1)/3 \\ Charles R Greathouse IV, Jul 26 2016
Formula
G.f.: 2*x*(3*x + 1)/(x - 1)^4.
a(n) = Sum_{k = 0..n} 2*k*(2*k - 1).
Sum_{n>=1} 1/a(n) = -3*(2*Pi - 12*log(2) + 1)/5 = 0.620748515723854...
a(n) mod 2 = 0.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(1 + 2*sqrt(2)*Pi - 2*(3 + sqrt(2))*log(2) + 4*sqrt(2)*log(2-sqrt(2)))/5. - Amiram Eldar, Nov 05 2020
Comments