A056041
Value for which b(a(n))=0 when b(2)=n and b(k+1) is calculated by writing b(k) in base k, reading this as being written in base k+1 and then subtracting 1.
Original entry on oeis.org
2, 3, 5, 7, 23, 63, 383, 2047
Offset: 0
a(3)=7 because starting with b(2)=3=11 base 2, we get b(3)=11-1 base 3=10 base 3=3, b(4)=10-1 base 4=3, b(5)=3-1 base 5=2, b(6)=2-1 base 6=1 and b(7)=1-1 base 7=0.
- R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
- L. Kirby, and J. Paris, Accessible independence results for Peano arithmetic, Bull. London Mathematical Society, 14 (1982), 285-293.
- J. Tromp, Programming Pearls
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Wikipedia, Goodstein's theorem
A268687
a(n) = MAX(g_k(n)) where g_k(n) is the function defined in A266202.
Original entry on oeis.org
0, 1, 2, 3, 11, 31, 191, 1023
Offset: 0
g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;
g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;
g_3(4) = b_4(2*4 + 1 ) -1 = 2*5 + 1-1 = 10;
g_4(4) = b_5(2*5) -1= 2*6 - 1 = 11;
g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;
g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;
g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;
g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;
g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;
g_10(4) = b_11(11)-1 = 12-1 = 11;
g_11(4) = b_12(11)-1 = 11-1 = 10;
g_12(4) = b_13(10)-1 = 10-1 = 9;
g_13(4) = b_14(9)-1 = 9-1 = 8;
…
g_21(4) = 0;
So a(4)=11.
-
g(n, k) = {if (n == 0, return (k)); wn = k; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; }
a(n) = {vg = []; ok = 1; ns = 0; while(ok, newg = g(ns, n); vg = concat(vg, newg); if (newg <= 0, ok = 0); ns++;); vmax = vecmax(vg); vmax;} \\ Michel Marcus, Apr 04 2016; corrected Jun 13 2022
A268688
a(n) = (A266203(n)-1)/2 if n>0, and a(0) = 0.
Original entry on oeis.org
0, 0, 1, 2, 10, 30, 190, 1022
Offset: 0
g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;
g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;
g_3(4) = b_4(2*4 + 1 ) -1 = 2*5 + 1-1 = 10;
g_4(4) = b_5(2*5) -1= 2*6 - 1 = 11;
g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;
g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;
g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;
g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;
g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;
g_10(4) = b_11(11)-1 = 12-1 = 11;
g_11(4) = b_12(11)-1 = 11-1 = 10;
g_12(4) = b_13(10)-1 = 10-1 = 9;
g_13(4) = b_14(9)-1 = 9-1 = 8;
…
g_21(4) = 0;
So a(4) = 10.
Showing 1-3 of 3 results.
Comments