cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056041 Value for which b(a(n))=0 when b(2)=n and b(k+1) is calculated by writing b(k) in base k, reading this as being written in base k+1 and then subtracting 1.

Original entry on oeis.org

2, 3, 5, 7, 23, 63, 383, 2047
Offset: 0

Views

Author

Henry Bottomley, Aug 04 2000

Keywords

Comments

a(8)=3*2^(3*2^27+27)-1 which is more than 10^(10^8) and equal to the final base of the Goodstein sequence starting with g(2)=4; indeed, apart from the initial term, the sequence starting with b(2)=8 is identical to the Goodstein sequence starting with g(2)=4. The initial terms of a(n) [2, 3, 5 and 7] are equal to the initial terms of the equivalent final bases of Goodstein sequences starting at the same points. a(9)=2^(2^(2^70+70)+2^70+70)-1 which is more than 10^(10^(10^20)).
It appears that if n is even then a(n) is one less than three times a power of two, while if n is odd then a(n) is one less than a power of two.
Comment from John Tromp, Dec 02 2004: The sequence 2,3,5,7,3*2^402653211 - 1, ... gives the final base of the Goodstein sequence starting with n. This is an example of a very rapidly growing function that is total (i.e. defined on any input), although this fact is not provable in first-order Peano Arithmetic. See the links for definitions. This grows even faster than the Friedman sequence described in the Comments to A014221.
In fact there are two related sequences: (i) The Goodstein function l(n) = number of steps for the Goodstein sequence to reach 0 when started with initial term n >= 0: 0, 1, 3, 5, 3*2^402653211 - 3, ...; and (ii) the same sequence + 2: 2, 3, 5, 7, 3*2^402653211 - 1, ..., which is the final base reached. Both grow too rapidly to have their own entries in the database.
Related to the hereditary base sequences - see cross-reference lines.
This sequence gives the final base of the weak Goodstein sequence starting with n; compare A266203, the length of the weak Goodstein sequence. a(n) = A266203(n) + 2.

Examples

			a(3)=7 because starting with b(2)=3=11 base 2, we get b(3)=11-1 base 3=10 base 3=3, b(4)=10-1 base 4=3, b(5)=3-1 base 5=2, b(6)=2-1 base 6=1 and b(7)=1-1 base 7=0.
		

Crossrefs

Equals A266203 + 2.
Steps of strong Goodstein sequences: A056004, A057650, A059934, A059935, A059936, A271977.
Strong Goodstein sequences: A215409, A056193, A266204, A222117, A059933.
Woodall numbers: A003261.

A268687 a(n) = MAX(g_k(n)) where g_k(n) is the function defined in A266202.

Original entry on oeis.org

0, 1, 2, 3, 11, 31, 191, 1023
Offset: 0

Views

Author

Natan Arie Consigli, Apr 02 2016

Keywords

Examples

			g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;
g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;
g_3(4) = b_4(2*4 + 1 ) -1 = 2*5 + 1-1 = 10;
g_4(4) = b_5(2*5) -1= 2*6 - 1 = 11;
g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;
g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;
g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;
g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;
g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;
g_10(4) = b_11(11)-1 = 12-1 = 11;
g_11(4) = b_12(11)-1 = 11-1 = 10;
g_12(4) = b_13(10)-1 = 10-1 = 9;
g_13(4) = b_14(9)-1 = 9-1 = 8;
…
g_21(4) = 0;
So a(4)=11.
		

Crossrefs

Programs

  • PARI
    g(n, k) = {if (n == 0, return (k)); wn = k; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; }
    a(n) = {vg = []; ok = 1; ns = 0; while(ok, newg = g(ns, n); vg = concat(vg, newg); if (newg <= 0, ok = 0); ns++;); vmax = vecmax(vg); vmax;} \\ Michel Marcus, Apr 04 2016; corrected Jun 13 2022

Extensions

a(6)-a(7) from Michel Marcus, Apr 04 2016

A268688 a(n) = (A266203(n)-1)/2 if n>0, and a(0) = 0.

Original entry on oeis.org

0, 0, 1, 2, 10, 30, 190, 1022
Offset: 0

Views

Author

Natan Arie Consigli, Apr 02 2016

Keywords

Comments

The maximum values of k where g_k(n) is the maximal value.
g_k(n) is the weak Goodstein function defined in A266202.
Next term: 3*2^402653210-1.

Examples

			g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;
g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;
g_3(4) = b_4(2*4 + 1 ) -1 = 2*5 + 1-1 = 10;
g_4(4) = b_5(2*5) -1= 2*6 - 1 = 11;
g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;
g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;
g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;
g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;
g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;
g_10(4) = b_11(11)-1 = 12-1 = 11;
g_11(4) = b_12(11)-1 = 11-1 = 10;
g_12(4) = b_13(10)-1 = 10-1 = 9;
g_13(4) = b_14(9)-1 = 9-1 = 8;
…
g_21(4) = 0;
So a(4) = 10.
		

Crossrefs

Showing 1-3 of 3 results.