cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268714 Square array A(i,j) = A006068(i) + A006068(j), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 2, 4, 4, 2, 7, 3, 6, 3, 7, 6, 8, 5, 5, 8, 6, 4, 7, 10, 4, 10, 7, 4, 5, 5, 9, 9, 9, 9, 5, 5, 15, 6, 7, 8, 14, 8, 7, 6, 15, 14, 16, 8, 6, 13, 13, 6, 8, 16, 14, 12, 15, 18, 7, 11, 12, 11, 7, 18, 15, 12, 13, 13, 17, 17, 12, 10, 10, 12, 17, 17, 13, 13, 8, 14, 15, 16, 22, 11, 8, 11, 22, 16, 15, 14, 8, 9, 9, 16, 14, 21, 21, 9, 9, 21, 21, 14, 16, 9, 9
Offset: 0

Views

Author

Antti Karttunen, Feb 12 2016

Keywords

Examples

			The top left [0 .. 15] x [0 .. 15] section of the array:
   0,  1,  3,  2,  7,  6,  4,  5, 15, 14, 12, 13,  8,  9, 11, 10
   1,  2,  4,  3,  8,  7,  5,  6, 16, 15, 13, 14,  9, 10, 12, 11
   3,  4,  6,  5, 10,  9,  7,  8, 18, 17, 15, 16, 11, 12, 14, 13
   2,  3,  5,  4,  9,  8,  6,  7, 17, 16, 14, 15, 10, 11, 13, 12
   7,  8, 10,  9, 14, 13, 11, 12, 22, 21, 19, 20, 15, 16, 18, 17
   6,  7,  9,  8, 13, 12, 10, 11, 21, 20, 18, 19, 14, 15, 17, 16
   4,  5,  7,  6, 11, 10,  8,  9, 19, 18, 16, 17, 12, 13, 15, 14
   5,  6,  8,  7, 12, 11,  9, 10, 20, 19, 17, 18, 13, 14, 16, 15
  15, 16, 18, 17, 22, 21, 19, 20, 30, 29, 27, 28, 23, 24, 26, 25
  14, 15, 17, 16, 21, 20, 18, 19, 29, 28, 26, 27, 22, 23, 25, 24
  12, 13, 15, 14, 19, 18, 16, 17, 27, 26, 24, 25, 20, 21, 23, 22
  13, 14, 16, 15, 20, 19, 17, 18, 28, 27, 25, 26, 21, 22, 24, 23
   8,  9, 11, 10, 15, 14, 12, 13, 23, 22, 20, 21, 16, 17, 19, 18
   9, 10, 12, 11, 16, 15, 13, 14, 24, 23, 21, 22, 17, 18, 20, 19
  11, 12, 14, 13, 18, 17, 15, 16, 26, 25, 23, 24, 19, 20, 22, 21
  10, 11, 13, 12, 17, 16, 14, 15, 25, 24, 22, 23, 18, 19, 21, 20
		

Crossrefs

Cf. A006068 (row 0, column 0).
Cf. A066194 (row 1, column 1).
Cf. A268716 (main diagonal).
Cf. also A268724.

Programs

  • Mathematica
    A006068[n_] := BitXor @@ Table[Floor[n/2^m], {m, 0, Log[2, n]}]; A006068[0] = 0; A[i_, j_] := A006068[i] + A006068[j]; Table[A[i-j, j], {i, 0, 13}, {j, 0, i}] // Flatten (* Jean-François Alcover, Feb 17 2016 *)
  • PARI
    \\ Produces the triangle when the array is read by antidiagonals
    a(n) = if(n<2, n, 2*a(floor(n/2)) + (n%2 + a(floor(n/2))%2)%2); /* A006068 */
    T(i,j) = a(i) + a(j);
    for(i=0, 13, for(j=0, i, print1(T(i - j, j),", "););print();); \\ Indranil Ghosh, Mar 23 2017
    
  • Python
    # Produces the triangle when the array is read by antidiagonals
    def A006068(n):
        return n if n<2 else 2*A006068(n//2) + (n%2 + A006068(n//2)%2)%2
    def T(i,j): return A006068(i) + A006068(j)
    for i in range(14):
        print([T(i - j, j) for j in range(i + 1)]) # Indranil Ghosh, Mar 23 2017
  • Scheme
    (define (A268714 n) (A268714bi (A002262 n) (A025581 n)))
    (define (A268714bi row col) (+ (A006068 row) (A006068 col)))
    

Formula

A(i,j) = A006068(i) + A006068(j).
A(i,j) = A006068(A268715(i,j)). - Corrected Mar 23 2017