cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268732 Sum of the numbers of divisors of gcd(x,y) with x*y <= n.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 41, 43, 47, 51, 60, 62, 70, 72, 80, 84, 88, 90, 102, 106, 110, 116, 124, 126, 134, 136, 148, 152, 156, 160, 176, 178, 182, 186, 198, 200, 208, 210, 218, 226, 230, 232, 250, 254, 262, 266, 274, 276, 288, 292, 304, 308, 312, 314, 330
Offset: 1

Views

Author

Michel Marcus, Feb 12 2016

Keywords

Comments

Partial sums of A124315.

Crossrefs

Programs

  • Mathematica
    Table[Total@ Flatten@ Map[Function[k, DivisorSigma[0, GCD[#, k]] & /@ Select[Range@ n, # k <= n &]], Range@ n], {n, 60}] (* Michael De Vlieger, Feb 12 2016 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, numdiv(gcd(d, k/d))));
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), 2*sum(j=1, sqrtint(n\(k*k)), n\(j*k*k))-sqrtint(n\(k*k))^2); \\ Daniel Suteu, Jan 08 2019
    
  • PARI
    a(n)=sum(k=1,n,sum(j=1,sqrt(n/k),floor(n/k/j^2))); \\ Benoit Cloitre, Oct 02 2022

Formula

a(n) = Sum_{k=1..floor(sqrt(n))} (2*Sum_{j=1..floor(sqrt(n/k^2))} floor(n/(j*k^2)) - floor(sqrt(n/k^2))^2). - Daniel Suteu, Jan 08 2019
a(n) = n*zeta(2)*(log(n) + 2*gamma - 1 + 2*zeta'(2)/zeta(2)) + O(sqrt(n)*log(n)), where gamma is the Euler-Mascheroni constant A001620. - Daniel Suteu, Jan 11 2019
a(n) = Sum_{i=1..n} Sum_{j=1..n} floor(sqrt(n/(i*j))). - Ridouane Oudra, Apr 13 2025