cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268742 Expansion of x*(1 + x + 18*x^2 + 10*x^3 - x^4 + 11*x^5 + 18*x^6 + 2*x^7) / (1 - x - 2*x^4 + 2*x^5 + x^8 - x^9).

Original entry on oeis.org

0, 1, 2, 20, 30, 31, 44, 98, 120, 121, 146, 236, 270, 271, 308, 434, 480, 481, 530, 692, 750, 751, 812, 1010, 1080, 1081, 1154, 1388, 1470, 1471, 1556, 1826, 1920, 1921, 2018, 2324, 2430, 2431, 2540, 2882, 3000, 3001, 3122, 3500, 3630, 3631, 3764, 4178, 4320, 4321
Offset: 0

Views

Author

Bruno Berselli, Feb 12 2016

Keywords

Comments

The sequence lists all m, in increasing order, such that floor(m/2) + floor(m/3) is a square.

Crossrefs

Cf. A010761.
Cf. A268251: nonnegative m for which floor(m/2)*floor(m/3) is a square.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1 + x + 18*x^2 + 10*x^3 - x^4 + 11*x^5 + 18*x^6 + 2*x^7)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2)));
  • Mathematica
    CoefficientList[x (1 + x + 18 x^2 + 10 x^3 - x^4 + 11 x^5 + 18 x^6 + 2 x^7)/((1 + x)^2 (1 - x)^3 (1 + x^2)^2) + O[x]^50, x]
    LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{0,1,2,20,30,31,44,98,120},50] (* Harvey P. Dale, Dec 30 2024 *)
  • Maxima
    makelist(coeff(taylor(x*(1 + x + 18*x^2 + 10*x^3 - x^4 + 11*x^5 + 18*x^6 + 2*x^7)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2), x, 0, n), x, n), n, 0, 50);
    
  • PARI
    concat(0, Vec((1 + x+18*x^2 + 10*x^3 - x^4 + 11*x^5 + 18*x^6 + 2*x^7)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2) + O(x^50)))
    
  • Sage
    gf = x*(1 + x + 18*x^2 + 10*x^3 - x^4 + 11*x^5 + 18*x^6 + 2*x^7)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2); taylor(gf, x, 0, 50).list()
    

Formula

G.f.: x*(1 + x + 18*x^2 + 10*x^3 - x^4 + 11*x^5 + 18*x^6 + 2*x^7)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2).
a(n) = (30*(n-1)*n + 2*(18*n-3*(-1)^n-11)*(-1)^(n*(n+1)/2) - (6*n+1)*(-1)^n + 13)/16 + 1. Therefore:
a(4*k) = 30*k^2;
a(4*k+1) = 30*k^2 + 1;
a(4*k+2) = 30*k^2 + 12*k + 2;
a(4*k+3) = 30*k^2 + 48*k + 20.