A268753 Primes congruent to 1 mod 13.
53, 79, 131, 157, 313, 443, 521, 547, 599, 677, 859, 911, 937, 1093, 1171, 1223, 1249, 1301, 1327, 1483, 1613, 1847, 1873, 1951, 2003, 2029, 2081, 2237, 2341, 2393, 2549, 2731, 2861, 2887, 2939, 3121, 3251, 3329, 3407, 3433, 3511, 3719, 3797, 3823, 4057, 4421, 4447, 4603, 4733, 4759, 4889, 4967, 4993, 5227, 5279
Offset: 1
Examples
53 is the first prime of the form 13k + 1, therefore a(1)=53.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A059245 (x^13 = 2 has no solution mod prime p).
Programs
-
Magma
[p: p in PrimesUpTo(5300) | p mod 13 in {1} ]; // Vincenzo Librandi, Feb 13 2016
-
Mathematica
Select[Prime@ Range@ 700, Mod[#, 13] == 1 &] (* Michael De Vlieger, Feb 12 2016 *)
-
PARI
forprime(p=2, 1e4, if(p%13==1, print1(p", ")))
-
PARI
forprimestep(p=53,1e4,26,print1(p", ")) \\ Charles R Greathouse IV, Mar 11 2020
Formula
a(n) ~ 12n log n. - Charles R Greathouse IV, Mar 11 2020
Comments