A268835 Main diagonal of arrays A268833 & A268834: a(n) = A101080(n, A268820(n, 2*n)).
0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 5, 2, 1, 4, 3, 2, 3, 4, 5, 4, 3, 6, 5, 2, 3, 2, 1, 4, 5, 4, 3, 2, 3, 4, 5, 4, 3, 6, 5, 4, 5, 4, 3, 6, 7, 6, 5, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 3, 6, 5, 4, 5, 4, 3, 6, 7, 6, 5, 4, 5, 6, 5, 4, 5, 4, 5, 6, 7, 8, 7, 6, 5, 6, 5, 2, 3, 4, 3, 4, 5, 4, 5, 2, 3, 4, 5, 2, 1, 4, 3, 4, 5, 6, 5, 6, 5, 6, 5, 4
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1024
- Indranil Ghosh, C program to generate the sequence
Programs
-
Mathematica
A101080[n_, k_]:= DigitCount[BitXor[n, k], 2, 1];A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m=A006068[Floor[n/2]]}, 2m + Mod[Mod[n,2] + Mod[m, 2], 2]]]; a[r_, 0]:= 0; a[0, c_]:=c; a[r_, c_]:= A003188[1 + A006068[a[r - 1, c - 1]]]; Flatten@ Table[A101080[n, a[n, 2n]], {n, 0, 300}] (* Indranil Ghosh, Apr 02 2017 *)
-
PARI
b(n) = if(n<1, 0, b(n\2) + n%2); A101080(n, k) = b(bitxor(n, k)); A003188(n) = bitxor(n, n\2); A006068(n) = if(n<2, n, {my(m = A006068(n\2)); 2*m + (n%2 + m%2)%2}); A268820(r, c) = if(r==0, c, if(c==0, 0, A003188(1 + A006068(A268820(r - 1, c - 1))))); for(n=0, 300, print1(A101080(n, A268820(n, 2*n)),", ")) \\ Indranil Ghosh, Apr 02 2017
-
Python
def A101080(n, k): return bin(n^k)[2:].count("1") def A003188(n): return n^(n//2) def A006068(n): if n<2: return n else: m=A006068(n//2) return 2*m + (n%2 + m%2)%2 def A268717(n): return 0 if n<1 else A003188(1 + A006068(n - 1)) def A268820(r, c): return c if r<1 else 0 if c<1 else A003188(1 + A006068(A268820(r - 1, c - 1))) print([A101080(n, A268820(n, 2*n)) for n in range(301)]) # Indranil Ghosh, Apr 02 2017
-
Scheme
(define (A268835 n) (A101080bi n (A268820bi n (* 2 n)))) (define (A268835 n) (A268833bi n n)) ;; Code for A268833bi given in A268833.