A268843 Number of sequences with n copies each of 1,2,...,7 and longest increasing subsequence of length 7.
1, 6439075, 11260558754404, 12084070123028603391, 10162884447920460534301136, 7465237877942551321425443305798, 5078529731893937404909347067888886466, 3315159778348807570604149155371730111763599, 2124172213523649116114190361767338538457819064671
Offset: 1
Keywords
Links
- Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 1..100 (terms n=1..36 from Vaclav Kotesovec)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
Crossrefs
Column k=7 of A047909.
Formula
a(n) ~ 7^(7*n + 1/2) / (2*Pi*n)^3. - Vaclav Kotesovec, Feb 21 2016