A268914 Minimum difference between two distinct primes whose sum is 2*prime(n), n>4.
12, 12, 12, 24, 12, 24, 24, 12, 24, 48, 12, 12, 24, 36, 12, 24, 12, 36, 48, 36, 60, 24, 12, 12, 60, 48, 48, 36, 60, 24, 36, 24, 12, 72, 60, 12, 24, 36, 84, 60, 60, 84, 24, 120, 60, 96, 12, 24, 60, 24, 12, 12, 24, 84, 12, 24, 108, 48, 48, 84, 72, 72, 36, 60, 72, 36, 12, 84, 60, 12, 60, 72, 60, 48, 36, 24, 60, 24, 24, 48, 36, 48, 36, 168, 36, 48
Offset: 5
Examples
For n=5, 2*prime(5)=2*11=5+17 and 17-5=12. For n=6, 2*prime(6)=2*13=7+19 and 19-7=12. ... For n=8, 2*prime(8)=2*19=7+31 and 31-7=24.
Links
- Barry Cherkas, Table of n, a(n) for n = 5..10003
- G. H. Hardy and J. E. Littlewood, Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes, Acta Math. 44, 1-70, 1923.
Programs
-
Maple
N:= 1000: # to get a(5) .. a(N) p:= 7: for n from 5 to N do p:= nextprime(p); for k from 6 by 6 while not isprime(p+k) or not isprime(p-k) do od: A[n]:= 2*k od: seq(A[n],n=5..N); # Robert Israel, Mar 09 2016
-
Mathematica
f[n_]:=Block[{p=Prime[n],k},k=p+6; While[!PrimeQ[k]||!PrimeQ[2p-k],k=k+6];2(k-p)]; seq=Reap[Do[Sow[f[n]],{n,5,200}]][[2]][[1]]; seq (*For large data sets (say, N>5000), replace 200 with N and the above algorithm is comparatively efficient.*) Table[2 SelectFirst[Range[#/2], Function[k, AllTrue[{#/2 + k, #/2 - k}, PrimeQ]]] &[2 Prime@ n], {n, 5, 120}] (* Michael De Vlieger, Mar 09 2016, Version 10 *)
-
PARI
a(n) = {p = prime(n); d = 2; while (! (isprime(p-d) && isprime(p+d)), d+=2); 2*d;} \\ Michel Marcus, Mar 17 2016
Formula
a(n) = 2*A078611(n+2).
Comments