A350713 Maximum smallest prime required to generate all Goldbach partitions to 10^n.
3, 19, 73, 173, 293, 523, 751, 1093, 1789, 1877, 2803, 3457, 3917, 4909, 5569, 6961, 7753, 9341
Offset: 1
Examples
The first three partitions with the smallest first member are (3,3), (3,5), and (3,7), so the smallest prime required to generate all Goldbach partitions up through 10^1 is 3.
Programs
-
Mathematica
gp = Compile[{{n, Integer}}, Block[{p = 2}, While[! PrimeQ[n - p], p = NextPrime@p]; p]]; a[n] = 3; a[n] := Block[{k = 10^(n - 1), lmt = 10^n + 1, mx = 0}, While[k < lmt, b = gp@k; If[b > mx, mx = b]; k += 2]; mx]; (* Robert G. Wilson v, Mar 04 2022 *)
Extensions
a(9)-a(18) from Robert G. Wilson v, Mar 04 2022
Comments