A268922 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-4). These are the 1 mod 5 numbers, except for n = 0.
0, 1, 11, 11, 261, 2136, 2136, 64636, 220886, 1392761, 7252136, 46314636, 241627136, 974049011, 2194752136, 8298267761, 99851002136, 710202564636, 710202564636, 12154294361511, 31227780689636
Offset: 0
Examples
n=2: 11^2 + 4 = 125 == 0 (mod 5^2), and 125 is the only solution from {0, 1, ..., 24} which is congruent to 1 modulo 5. n=3: the only solution of x1^2 + 4 == 0 (mod 5^3) with x1 from {0, ..., 124} and x1 == 1 (mod 4) is also 11. The number 114 satisfies also the first congruence but not the second one: 114 == 2 (mod 4).
References
- Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1430
- Wolfdieter Lang, Note on a Recurrence for Approximation Sequences of p-adic Square Roots
- Wikipedia, Hensel's lemma.
Programs
-
Maple
with(padic):D1:=op(3,op([evalp(RootOf(x^2+4),5,20)][1])): 0,seq(sum('D1[k]*5^(k-1)','k'=1..n), n=1..20); # alternative program - see A144837 a := proc (n) option remember; if n = 1 then 1 else irem( a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1), 5^n) end if; end: seq(a(n), n = 1..20); # Peter Bala, Nov 14 2022
-
PARI
a(n) = truncate(sqrt(-4+O(5^(n)))); \\ Michel Marcus, Mar 04 2016
Formula
Recurrence for n >= 1: a(n) = modp( a(n-1) + 2*(a(n-1)^2 + 4), 5^n), n >= 2, with a(1) = 1. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ... , m-1}.
a(n) = 5^n - A269590(n), n >= 1.
a(n) == Lucas(5^n) (mod 5^n). - Peter Bala, Nov 10 2022
Comments