cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268929 Primes 6k - 1 preceding the maximal gaps in A268928.

Original entry on oeis.org

5, 29, 113, 197, 521, 1109, 1733, 6389, 7349, 35603, 148517, 180797, 402593, 406907, 2339039, 5521721, 11157989, 20831267, 22440701, 27681263, 73451723, 241563407, 953758109, 1444257671, 1917281213, 6822753629, 15867286361, 28265029631, 40841579819, 177858259463
Offset: 1

Views

Author

Alexei Kourbatov, Feb 15 2016

Keywords

Comments

Subsequence of A007528 and A334544.
A268928 lists the corresponding record gap sizes. See more comments there.

Examples

			The first two primes of the form 6k-1 are 5 and 11, so a(1)=5. The next primes of this form are 17, 23, 29; the gaps 17-11 = 23-17 = 29-23 are not records so nothing is added to the sequence. The next prime of this form is 41 and the gap 41-29=12 is a new record, so a(2)=29.
		

Crossrefs

Programs

  • PARI
    re=0; s=5; forprime(p=11, 1e8, if(p%6!=5, next); g=p-s; if(g>re, re=g; print1(s", ")); s=p)

Formula

a(n) = A268930(n) - A268928(n). - Alexei Kourbatov, Jun 15 2020.

A268930 Primes 6k - 1 at the end of the maximal gaps in A268928.

Original entry on oeis.org

11, 41, 131, 227, 557, 1151, 1787, 6449, 7433, 35729, 148667, 180959, 402761, 407153, 2339297, 5522039, 11158331, 20831621, 22441073, 27681671, 73452191, 241563941, 953758661, 1444258271, 1917281867, 6822754391, 15867287129, 28265030429, 40841580683, 177858260357
Offset: 1

Views

Author

Alexei Kourbatov, Feb 15 2016

Keywords

Comments

Subsequence of A007528 and A334545.
A268928 lists the corresponding record gap sizes. See more comments there.

Examples

			The first two primes of the form 6k-1 are 5 and 11, so a(1)=11. The next primes of this form are 17, 23, 29; the gaps 17-11 = 23-17 = 29-23 are not records so nothing is added to the sequence. The next prime of this form is 41 and the gap 41-29=12 is a new record, so a(2)=41.
		

Crossrefs

Programs

  • PARI
    re=0; s=5; forprime(p=11, 1e8, if(p%6!=5, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)

Formula

a(n) = A268928(n) + A268929(n). - Alexei Kourbatov, Jun 15 2020.

A334543 First occurrences of gaps between primes 6k - 1: gap sizes.

Original entry on oeis.org

6, 12, 18, 30, 24, 36, 42, 54, 48, 60, 84, 66, 78, 72, 126, 90, 102, 108, 114, 96, 120, 150, 138, 162, 132, 144, 168, 246, 156, 180, 186, 240, 204, 192, 216, 198, 210, 174, 258, 252, 222, 234, 228, 318, 282, 264, 276, 342, 306, 294, 312, 270, 354, 372
Offset: 1

Views

Author

Alexei Kourbatov, May 05 2020

Keywords

Comments

Contains A268928 as a subsequence. First differs from A268928 at a(5)=24.
Conjecture: the sequence is a permutation of all positive multiples of 6, i.e., all positive terms of A008588.
Conjecture: a(n) = O(n). See arXiv:2002.02115 (sect.7) for discussion.

Examples

			The first two primes of the form 6k-1 are 5 and 11, so a(1)=11-5=6. The next primes of this form are 17, 23, 29; the gaps 17-11 = 23-17 = 29-23 have size 6 which already occurred before; so nothing is added to the sequence. The next prime of this form is 41 and the gap 41-29=12 has not occurred before, so a(2)=12.
		

Crossrefs

Programs

  • PARI
    isFirstOcc=vector(9999,j,1); s=5; forprime(p=11,1e8,if(p%6!=5,next); g=p-s; if(isFirstOcc[g/6], print1(g", "); isFirstOcc[g/6]=0); s=p)

Formula

a(n) = A334545(n) - A334544(n).

A084162 a(n) is the length of the gap in sequence A084161.

Original entry on oeis.org

3, 8, 12, 16, 24, 32, 48, 56, 60, 68, 72, 88, 108, 128, 148, 152, 200, 224, 240, 248, 252, 260, 272, 280, 324, 360, 420, 444, 460, 516, 520, 540, 628, 684, 696, 716, 720, 744, 800, 884, 960, 1044, 1084
Offset: 0

Views

Author

Sven Simon, May 17 2003

Keywords

Comments

First occurrence maximum gaps in sequence A002313 (real primes with corresponding complex primes).
From Alexei Kourbatov, Feb 16 2016: (Start)
Dirichlet's theorem on arithmetic progressions and GRH suggest that average gaps between primes of the form 4k + 1 below x are about phi(4)*log(x). This sequence shows that the record gap ending at p grows almost as fast as phi(4)*log^2(p). Here phi(n) is A000010, Euler's totient function; phi(4)=2.
Conjecture: a(n) < phi(4)*log^2(A268963(n)); A268963 are the end-of-gap primes.
(End)
Conjecture: a(n) < phi(4)*n^2 for all n > 2. (Note the starting offset 0.) - Alexei Kourbatov, Aug 12 2017

Examples

			a(3) = 16: There are no primes p = 1 mod 4 between 73 and 89, this gap is the largest up to 89, the gap size is 16.
		

Crossrefs

Cf. A002313, A084160, A084161 (start of gap), A268963 (end of gap); A268799, A268925, A268928.

Programs

  • Mathematica
    Reap[Print[3]; Sow[3]; r = 0; p = 5; For[q = 7, q < 10^7, q = NextPrime[q], If[Mod[q, 4] == 3, Continue[]]; g = q - p; If[g > r, r = g; Print[g] Sow[g]]; p = q]][[2, 1]] (* Jean-François Alcover, Feb 20 2019, from PARI *)
  • PARI
    print1(3); r=0; p=5; forprime(q=7, 1e7, if(q%4==3, next); g=q-p; if(g>r, r=g; print1(", "g)); p=q)
Showing 1-4 of 4 results.